MODULE fnnmodule USE fpType USE neuralnetwork USE nnType USE normalize !USE fpCalc IMPLICIT NONE PUBLIC CONTAINS SUBROUTINE prepfNN(natoms, nelement, MAX_FPS, atomicNumbers, uniqueNrs) BIND(C,name='prepfNN') USE, INTRINSIC :: iso_c_binding IMPLICIT NONE ! Inputs INTEGER(c_long) :: natoms, i, j INTEGER(c_int) :: nelement, MAX_FPS !max_nneighs = MAXVAL(num_neigh) INTEGER(c_int), DIMENSION(nAtoms) :: atomicNumbers INTEGER(c_int), DIMENSION(nelement) :: uniqueNrs INTEGER :: nAt INTEGER, DIMENSION(natoms) :: symbols CHARACTER*2, DIMENSION(nelement) :: uniq_elements CHARACTER*2, DIMENSION(92) :: elementArray DATA elementArray / "H","He","Li","Be","B","C","N","O", & "F","Ne","Na","Mg","Al","Si","P","S","Cl","Ar","K","Ca","Sc", & "Ti","V","Cr","Mn","Fe","Co","Ni","Cu","Zn","Ga","Ge","As","Se", & "Br","Kr","Rb","Sr","Y","Zr","Nb","Mo","Tc","Ru","Rh","Pd","Ag", & "Cd","In","Sn","Sb","Te","I","Xe","Cs","Ba","La","Ce","Pr","Nd", & "Pm","Sm","Eu","Gd","Tb","Dy","Ho","Er","Tm","Yb","Lu","Hf","Ta", & "W","Re","Os","Ir","Pt","Au","Hg","Tl","Pb","Bi","Po","At","Rn", & "Fr","Ra","Ac","Th","Pa","U" / DO i = 1, nelement ! Read from pos.con uniq_elements(i) = elementArray(uniqueNrs(i)) END DO DO i = 1, nAtoms DO j = 1, nelement IF (atomicNumbers(i) == uniqueNrs(j)) THEN symbols(i) = j END IF END DO END DO !Define common variable for fNN total_natoms=nAtoms ! Load fNN parameters by reading mlff.pyamff CALL loadfNNParas(nelement, MAX_FPS, uniq_elements) CALL init END SUBROUTINE ! SUBROUTINE prepfNN_ase(nelement, MAX_FPS, uniq_elements) ! ! Read neural network parameters from mlff.pyamff for ASE Fortran calculator. ! ! This subroutine is also desgined to be called only once. ! IMPLICIT NONE ! ! Inputs ! INTEGER :: nelement, MAX_FPS ! CHARACTER*2, DIMENSION(nelement) :: uniq_elements ! ! ! Load fNN parameters by reading mlff.pyamff ! CALL loadfNNParas(nelement, MAX_FPS, uniq_elements) ! !CALL init ! ! END SUBROUTINE SUBROUTINE update_atomInfo(nAtoms, nelement, MAX_FPS, symbols) !This subroutine updates atomic information and ASE fortran calculator uses this subroutine to update atomic information !of each image. ! Inputs INTEGER :: natoms, MAX_FPS, nelement INTEGER, DIMENSION(natoms) :: symbols !Variables INTEGER :: i, j, k ! Update common variable, total_natoms, for fNN for each image total_natoms=nAtoms ! Allocate natoms_arr and update the array from symbols array for fNN ALLOCATE(natoms_arr(nelement)) DO k = 1, nelement natoms_arr(k) = COUNT(symbols .EQ. k) END DO ! Allocate atom_idx (atomic indices) ALLOCATE(atom_idx(MAXVAL(natoms_arr),nelement)) ! Allocate magnitudes and interceptScale array (for Normalization) here ALLOCATE(magnitude(MAX_FPS, MAXVAL(natoms_arr), nelement)) ALLOCATE(interceptScale(MAX_FPS, MAXVAL(natoms_arr), nelement)) magnitude = 0.0 interceptScale = 0.0 ! Store magnitude interceptScale in memory CALL normalizeParas(nelement) ! Prepare weights, biases with updated atomic information ! This process is create weights, bias arrays for matmul computations CALL init END SUBROUTINE SUBROUTINE update_atomInfo2(nAtoms, nelement, MAX_FPS, in_natomsarr) !This subroutine is used for training module IMPLICIT NONE !Inputs INTEGER :: nAtoms, nelement, MAX_FPS INTEGER, DIMENSION(nelement) :: in_natomsarr !Variables INTEGER :: i, k ! Update common variable, total_natoms, for fNN for each image total_natoms=nAtoms ! Allocate natoms_arr and update the array from input IF (ALLOCATED(natoms_arr) .EQV. .FALSE.) THEN ALLOCATE(natoms_arr(nelement)) END IF natoms_arr=in_natomsarr ! Allocate magnitudes and interceptScale array (for Normalization) here IF (ALLOCATED(magnitude) .EQV. .FALSE.) THEN ALLOCATE(magnitude(MAX_FPS, MAXVAL(natoms_arr), nelement)) ALLOCATE(interceptScale(MAX_FPS, MAXVAL(natoms_arr), nelement)) END IF !Load magnitude and intercept scale from elementwise magnitude and intercept scale magnitude = 0.0 interceptScale = 0.0 DO i=1, nelement DO k=1, natoms_arr(i) magnitude(1:nGs(i),k,i) = elem_mag(1:nGs(i),i) interceptScale(1:nGs(i),k,i) = elem_intercept(1:nGs(i),i) END DO END DO ! Prepare weights, biases with updated atomic information ! This process is create weights, bias arrays for matmul computations CALL init END SUBROUTINE SUBROUTINE forwardCalc(num_neigh, MAX_NEIGHS, neighs, symbols, in_atomidx,& fps, ordered_fps, dfps, max_nGs, max_natoms_arr, max_hidneurons) IMPLICIT NONE !f2py INTEGER, DIMENSION(:), ALLOCATABLE, INTENT(aux) :: nGs !f2py INTEGER, INTENT(aux) :: total_natoms INTEGER :: MAX_NEIGHS, max_nGs, max_natoms_arr, max_hidneurons INTEGER, DIMENSION(total_natoms) :: num_neigh, symbols INTEGER, DIMENSION(max_natoms_arr,nelements) :: in_atomidx INTEGER, DIMENSION(total_natoms, MAX_NEIGHS) :: neighs DOUBLE PRECISION, DIMENSION(total_natoms, max_nGs) :: fps DOUBLE PRECISION, DIMENSION(total_natoms, MAX_NEIGHS, 3, max_nGs) :: dfps !outputs DOUBLE PRECISION, DIMENSION(max_natoms_arr,max_nGs,nelements) :: ordered_fps !Variables INTEGER :: i, j ! Reorder calculated fps DO i = 1, nelements DO j = 1, natoms_arr(i) ordered_fps(j,1:nGs(i),i) = fps(in_atomidx(j,i),1:nGs(i)) END DO END DO CALL forward(num_neigh, MAX_NEIGHS, neighs, symbols, in_atomidx, & ordered_fps, dfps, max_nGs, max_natoms_arr, max_hidneurons) END SUBROUTINE END MODULE