
Suppressing the bipolar contribution to the thermoelectric properties
of Mg2Si0.4Sn0.6 by Ge substitution

Libin Zhang,1,a) Penghao Xiao,2 Li Shi,1,3 Graeme Henkelman,2 John B. Goodenough,1,3

and Jianshi Zhou1,3

1Materials Science and Engineering Program, University of Texas at Austin, Austin, Texas 78712, USA
2Department of Chemistry and the Institute for Computational and Engineering Sciences, University of Texas
at Austin, Austin, Texas 78712, USA
3Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA

(Received 16 January 2015; accepted 4 April 2015; published online 20 April 2015)

The optimized thermoelectric figure of merit (ZT) of Mg2Si0.4Sn0.6 peaks at about 750 K because

its relatively narrow band gap results in pronounced bipolar transport at higher temperatures. To

suppress the bipolar transport, we have conducted a combined experimental and theoretical

investigation of Ge-substitution effects on the band structures and thermoelectric properties of

Sb-doped Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and 0.2) synthesized by solid state reaction. The

measured transport properties of these compositions can be interpreted by a triple-parabolic-band

model based on first-principle calculation of band structures. The results show that the bipolar

conduction in the temperature range up to 800 K was effectively suppressed by Ge substitution that

widens the band gap. As a side effect, Ge substitution induces the separation of two otherwise

converged conduction bands in Mg2Si0.4Sn0.6, leading to reduced thermoelectric performance at

low temperatures. The result of these two competing effects is that Ge-substituted samples achieve

the maximum power factor similar to that of Mg2Si0.4Sn0.6, but with an increased peak temperature.

In addition, Ge substitution reduces the bipolar thermal conductivity while maintaining the low lat-

tice thermal conductivity of Mg2Si0.4Sn0.6. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4918311]

I. INTRODUCTION

Thermoelectric (TE) devices have received renewed

research interest because of potential applications in waste

heat recovery and refrigeration. The heat to electric power

conversion efficiency of such devices is characterized by the

dimensionless figure of merit (ZT) of the constituent thermo-

electric materials. ZT is calculated as ZT ¼ S2r
jLþje

T, where S
is the Seebeck coefficient, r is the electrical conductivity, T
is the absolute temperature, jL and je are the lattice and elec-

tronic contributions to the thermal conductivity, respectively.

S, r, and je are correlated electronic properties, while jL

depends on crystal structure and chemical bonding. In order

to improve ZT, a variety of approaches have been explored

to enhance the power factor S2r and reduce jL. It has been

reported that increasing conducting band degeneracy could

effectively enhance the Seebeck coefficient without sacrific-

ing the electrical conductivity.1 It has also been demon-

strated that some chemical doping can introduce additional

resonant electronic states and increase the total electronic

density of states near the Fermi energy, so that the power

factor increases.2 On the other hand, the approaches for

reducing jL include employing crystal structures with pro-

nounced anharmonicity in the atomic bonding,3 complex

crystal structures,4–6 alloying,7 and nanostructuring,8,9 which

enhance phonon scattering by phonons, defects, or grain

boundaries.

Electron-doped Mg2SixSn1�x solid solutions are promis-

ing n-type TE materials for waste heat recovery because of

their high thermoelectric performance as well as the low

cost, earth abundance, and environmental friendliness of the

majority of the constituent elements. Mg2SixSn1–x crystalli-

zes in the anti-fluorite crystal structure with the space group

Fm�3m, as shown in the schematic drawing of Fig. 1(a). With

such a simple crystal structure, the lattice thermal conductiv-

ities of Mg2SixSn1�x solid solutions are as low as 2.0 W m�1

K�1 owing to a large mass mismatch between Si and Sn.10

Besides the low lattice thermal conductivity, Zaitsev et al.
suggested that two conduction bands converge at an opti-

mized composition in Mg2SixSn1�x, x¼ 0.6, giving rise to a

high band degeneracy and therefore an enhanced ZT.10 Liu

et al. later systematically investigated the thermoelectric

properties of Mg2SixSn1�x series from x¼ 0.2 to x¼ 0.8 and

concluded that the x¼ 0.7 sample gives the highest ZT, in

agreement with their density functional theory (DFT) calcu-

lation that predicted two conduction bands converge at

x¼ 0.7.11

However, the Mg2SixSn1�x sample with a higher Sn

content, x¼ 0.6 to 0.7, has a relatively narrow band gap

owing to the small band gap of Mg2Sn.12 In a narrow band-

gap semiconductor, intrinsic carriers can be thermally

excited, leading to the co-existence of electron and hole

transport.13 Such bipolar transport decreases the Seebeck

coefficient because of the opposite signs that electron and

hole contribute to the Seebeck coefficient. It also results in

an additional contribution to the thermal conductivity due toa)libinzhang@utexas.edu
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the presence of both electron and hole currents that carry

non-zero Peltier heat even under zero net electrical current

condition.14 Consequently, the bipolar effect decreases the

ZT at temperatures where the intrinsic thermal excitation is

significant. For example, Bi2Te3 and PbTe, the state-of-the-

art TE materials, show ZT peaks at relative low tempera-

tures; their ZT value are reduced at high temperatures due to

their narrow band gaps and therefore the bipolar effect.15

Similarly, the peak ZT of Mg2SixSn1�x occurs at the temper-

ature near 750 K,10 above which the bipolar effects results in

a decreased ZT. Increasing the band gap could possibly

improve the ZT at high temperatures by preventing the bipo-

lar transport effect.16

Here, we report an investigation of Ge substitution of Sn

to increase the band gap of Mg2Si0.4Sn0.6 so as to suppress

the bipolar effect. This investigation is motivated by prior

reports that Mg2Ge has a larger band gap (0.74 eV) than that

in Mg2Sn (0.35 eV).12 Moreover, when compared to Mg2Si

that has a similar band gap of 0.78 eV, the band gap of

Mg2Ge decreases relatively slowly with increasing tempera-

ture. Specifically, the temperature dependence of band

gap in Mg2Ge is �1.8� 10�4 eV/K while that of Mg2Si is

�6� 10�4 eV/K.12 In addition, introducing Ge into

Mg2SixSn1�x may increase the complexity of band struc-

ture17 as well as the structure disorder that may further

reduce the lattice thermal conductivity.18,19

In Secs. II and III, we first report the measured TE proper-

ties of Sb-doped Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and 0.2) sam-

ples prepared by the solid-state reaction and consolidated by

spark plasma sintering (SPS). Then, we investigate the band

structures by DFT calculation in conjunction with Vegard’s

law. Finally, a triple-parabolic-band (TPB) model is developed

to quantitatively understand the relationship between TE prop-

erties and band structures in Mg2Si0.4Sn0.6�yGey solid

solutions. Based on this TPB model, we also calculate the

bipolar thermal conductivity and extract the lattice thermal

conductivity.

II. EXPERIMENTAL METHODS

A. Materials preparation

We synthesized Sb-doped Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1,

and 0.2) solid solutions with a one-step solid state reaction

method that was carried out in a reductive environment. The

stoichiometric amounts of Mg (99.8%, 325 mesh), Si

(99.999%, 325 mesh), Sn (99.8%, 325 mesh), Ge (99.999%,

100 mesh), and Sb (99.5%, 325 mesh) powder, with an extra

15–17 mol. % of Mg20 were well mixed in an agate mortar. Sb

at 0.5–1.5 mol. % was doped on the Si/Sn/Ge site to achieve

the different carrier concentration. This powder mixture was

then pressed into pellets under 20 MPa pressure. Afterwards,

the pellets were wrapped in a Mo foil before being placed in

the center of a tube furnace with a flow of mixture gas of Ar

and H2 in ratio of 95:5. These samples were sintered for 15 h

at 1023 K. After the sintering was completed, the products

were taken out of the furnace, ground into fine powders, and

consolidated into hard pellets by using the SPS method at

1023–1073 K under 50 MPa for 8 min. The final products

show densities over 98% of the theoretical value. The gain size

of the resulting product is typically serval microns, which is

comparable to those samples prepared in a similar manner.21,22

B. Characterizations and measurements

The phase purity and the crystal structure of samples

were characterized by X-ray diffraction (XRD) on a Phillip

X’pert diffractometer with Cu Ka radiation. The pellets were

cut into 6 mm� 6 mm� 1 mm squares for Hall coefficient,

Seebeck coefficient, electrical conductivity, and thermal

FIG. 1. (a) The crystal structure of

Mg2(Si,Ge,Sn) (color key: yellow-Mg

and grey-Si/Ge/Sn); (b) XRD pattern of

Mg2Si0.4Sn0.4Ge0.2 together with the

results of the Rietveld refinement; (c)

the XRD patterns of Mg2Si0.4Sn0.6�yGey

(y¼ 0, 0.1, and 0.2) samples doped with

Sb; (d) the change of lattice parameters

with increasing Ge substitution in

Mg2Si0.4Sn0.6�yGey. The lattice parame-

ter shown for Mg2Si0.4Ge0.6 is the value

given in Ref. 12.
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diffusivity measurements. The electrical conductivity was

measured with a Physical Properties Measurement System

(PPMS, Quantum Design) by using the van der Pauw method

in the temperature range from 2 K to 300 K, and by using the

four-probe method with a homemade setup from 300 K to

800 K. The Seebeck coefficients were measured on two

homemade setups within the temperature ranges from 80 K

to 300 K and 300 K to 800 K. The Hall coefficients at 300 K

were measured on the PPMS. The thermal diffusivity (D)

was measured by using the laser flash method on a Netzsch

LFA 457 apparatus. In order to protect the sample from oxi-

dation from residue oxygen during the measurements, a 20-

nanometer thick Al2O3 layer was coated on the sample sur-

face.30 The heat capacity (Cp) was measured with the PPMS

in the temperature range from 2 K to 380 K. It is worth not-

ing that the Cp values measured at 380 K are slightly higher

than the theoretical value calculated by Dulong-Petit law.

Thus, we adopted the Cp value measured at 380 K for higher

temperatures. Thermal conductivity is calculated from the

equation j¼D� q�Cp. The density of samples q was

measured by using the Archimedes’ method.

III. RESULTS AND ANALYSIS

A. Materials characterization

The XRD patterns of the as-synthesized Mg2Si0.4Sn0.6�y

Gey (y¼ 0, 0.1, and 0.2) samples can be refined in the anti-

CaF2 crystal structure, as shown in Figs. 1(b) and 1(c). The

lattice parameters of the Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and

0.2) solid solutions are obtained from the Rietveld refine-

ment of XRD patterns (listed in Table I). As presented in

Fig. 1(d), the lattice parameters reduced linearly with the Ge

content y, following Vegard’s law, which indicates that Ge

atoms successfully substitute for Sn. A small peak at

2h� 43� corresponds to a MgO impurity phase of around

8 wt. % in all samples (details shown in Table I). The MgO

phase is almost unavoidable, since Mg is volatile and highly

reactive to residue oxygen at high temperatures. In our

method, the reductive Ar/H2 gas effectively suppressed the

oxygen partial pressure during sintering. Since the MgO

impurity content presents in all three samples is nearly

identical, we believe that the systematic changes in the TE

properties of Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and 0.2) are pri-

marily caused by Ge substitutions.

B. Thermoelectric properties

Fig. 2 shows the temperature-dependent thermoelectric

properties of Mg2(Si0.4Sn0.6�yGey)0.99Sb0.01 with Hall coeffi-

cients (RH) of 2.4(60.2)� 10�8m3 C�1 measured at room

temperature. As shown in Fig. 2(a), the Seebeck coefficient

(S) of Mg2Si0.4Sn0.6�yGey samples are all negative corre-

sponding to n-type doping. For Mg2Si0.4Sn0.6, the rise of S
value with temperature is suppressed at temperatures above

650 K. This behavior indicates the onset of intrinsic carrier

excitation and bipolar transport. Such bipolar suppression of

Seebeck coefficient in Mg2Si0.4Sn0.6 is also evident in previ-

ously reported experimental data, especially in the samples

with low carrier concentrations.10,23,24 In contrast, for

Mg2Si0.4Sn0.4Ge0.2, S increases nearly linearly with tempera-

ture up to 800 K. Overall, for samples with the same Sb dop-

ing concentration and similar Hall coefficient, increasing Ge

substitution y in Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and 0.2)

lowers the absolute value of S before the onset temperature

of bipolar conduction. When temperature continues to rise,

however, the Seebeck coefficients of Ge-substituted samples

become comparable to that of Mg2Si0.4Sn0.6, as a result of

elimination of the bipolar effect.

The suppression of bipolar effects in Ge-substituted

samples is also evident in the thermal conductivity results

shown in Fig. 2(b). The j of Mg2Si0.4Sn0.6 decreases with

temperature until it reaches a minimum at 650 K, above

which the bipolar transport starts to contribute significantly

to the total thermal conductivity. In contrast, although the j
value of the Ge-substituted samples are higher than that

Mg2Si0.4Sn0.6 at low temperatures, they monotonically

decrease with temperature until 800 K. Specifically, the j of

the intermediate composition, Mg2Si0.4Sn0.5Ge0.1, becomes

lowest among the three samples at temperatures above

700 K, although the difference is comparable to the measure-

ment uncertainty.

Fig. 2(c) shows that the electrical conductivities of all

three Sb-doped Mg2Si0.4Sn0.6�yGey samples decrease with

increasing temperature. The electrical conductivity increases

with increasing Ge content y, while the difference decreases

with increasing temperature. The calculated dimensionless

ZT are presented in Fig. 2(d). It is noted that the propagated

relative uncertainty of ZT values calculated from the three

measured properties is as much as about 13%, making it dif-

ficult to clearly identify the ZT difference among the three

samples. Nevertheless, at temperature below 650 K, the ZT
of Mg2Si0.4Sn0.6 appears to be the highest among three sam-

ples. However, the ZT for this sample peaks at Tmax� 750 K.

The ZT decreases as temperature further increases because of

the onset of bipolar effect. In contrast, the ZT keeps increas-

ing at high temperatures T> 650 K for the Ge substituted

samples. It appears that Tmax for the Ge-substituted samples

moves to a higher temperature: the higher the Ge concentra-

tion, the higher Tmax. Within the measured temperature

TABLE I. The crystal structure and phase information of Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and 0.2) obtained from the Rietveld refinement of the XRD patterns.

Bragg R-factor and v2 stand for Rietveld reliability factor and goodness of fit, respectively.

Ge composition Lattice parameter Cell volume Theoretical density Measured density MgO Bragg R-factor v2

y (Å) (Å3) (g/cm3) (g/cm3) (wt. %)

0 6.6024 287.81 3.03 3.01 7.43 2.73 0.95

0.1 6.5701 283.60 2.97 2.94 8.11 3.92 0.85

0.2 6.5244 277.73 2.93 2.92 8.49 3.66 0.92
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range, the maximum ZT, 1.1, among the three samples is

achieved in Mg2Si0.4Sn0.5 Ge0.1 at 800 K.

C. Electronic band structure

In order to understand the underlying relationship

between the chemical composition and band structure in

Mg2Si0.4Sn0.6�yGey, we obtained the band structures of two

end-point compositions, i.e., Mg2Si0.375Sn0.625 and Mg2

Si0.375Ge0.625, by DFT calculation. The PBE functional was

used to account for the exchange correlation energy during

geometry optimizations, and then the hybrid functional,

HSE06 form,25–27 was employed for the band structure cal-

culations. All the calculations were performed in the Vienna

Ab-initio simulation package (VASP). Valence electrons

were expanded in a plane wave basis set28,29 with an energy

cutoff of 246 eV, and core electrons were described by the

projector augmented wave (PAW) method. A supercell com-

posed of 2� 2� 2 unit cells was constructed, in which there

were 8 equivalent positions of Si/Sn/Ge. The PBE functional

significantly underestimates band gaps due to the electron

self-repulsion error and predicts all the compounds to be

metal. The hybrid HSE06 gives rise to more accurate band

gap results, although it may still not exactly reproduce exper-

imental values. The trend of band gap change upon alloying

can be captured by HSE06.

Figs. 3(a) and 3(b) show the calculated band structures

of Mg2Si0.375Sn0.625 and Mg2Si0.375Ge0.625. It is known that

Mg2(Si, Sn, and Ge) solid solutions are indirect-band-gap

semiconductors, as illustrated schematically in Fig. 4(a). The

band structures presented in Figs. 3(a) and 3(b) look rather

like semiconductors with direct band gap because of the

zone folding of the 2� 2� 2 supercell used in this calcula-

tion. Fig. 3(c) presents the zone-folding effect in the first

Brillouin zone of a Mg2X (X¼ Si, Sn, or Ge) primitive cell.

It has been reported that two conduction band bottoms locate

on X point and valance band tops locate on C point in the

primitive cell representation.10,30 In the 2� 2� 2 supercell

representation, the original X points (marked as black in Fig.

3(c)) are folded to the C point. The center-points of C-X

lines becomes the new X points (marked as red). In Figs.

3(a) and 3(b), at the C point, the two conduction bands in

blue and green are folded here from the original X point

along the ky axis when the original C-X line shrinks by half.

Those extra magenta bands are folded from the original

equivalent X points along the kx and kz axes. The three direc-

tions (kx, ky, and kz) should be isotropic for a perfectly ran-

dom alloy and thus one band folded along these three

directions should be degenerate at the C point. However, in

this calculation, the supercell is too small to yield the alloy

randomness. This artificial asymmetry causes energy split-

ting of the equivalent bands at the C point. Despite this dis-

crepancy, it is clear in Fig. 3 that the band gap of 0.59 eV for

Mg2Si0.375Ge0.625 is significantly larger than that of 0.28 eV

for Mg2Si0.375Sn0.625. The two conduction bands (green and

blue) in Mg2Si0.375Sn0.625 are almost converged while they

are separated by approximately 0.31 eV in Mg2Si0.375Ge0.625.

Linear extrapolation of the band structures from these two

endpoints, following Vegard’s law, suggests that as Ge con-

tent y increases by 0.1, both Eg and dE increase approxi-

mately by 0.05 eV in Mg2Si0.4Sn0.6�yGey. It is worth-noting

that no significant change in band curvatures was observed

between Mg2Si0.375Sn0.625 and Mg2Si0.375Ge0.625. Overall,

this DFT calculation suggests that Ge substitution has similar

effects on changing band structures as increasing Si content

in Mg2SixSn1�x, in terms of changing the band gap and

conduction-band splitting. However, as we discussed earlier,

the negative temperature dependence of band gap in Mg2Ge

is much smaller than that in Mg2Si. Ge substitution is thus

FIG. 2. Temperature-dependent (a)

Seebeck coefficient with 5% uncer-

tainty, (b) thermal conductivity with

7% uncertainty, (c) electrical conduc-

tivity with 5% uncertainty, and (d)

dimensionless ZT of Sb-doped

Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and

0.2) with 13% uncertainty. All these

samples show the approximately the

same Hall coefficient of 2.4

(60.2)� 10�8 m3 C�1. Each sample is

labeled with Ge substitution level y
and Hall coefficient with the unit of

m3 C�1.
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more appealing for the purpose of widening band gap at high

temperatures.

D. Triple-parabolic-band modeling and analysis

The band-gap widening and conduction-band separation

induced simultaneously by Ge substitution have competing

effects on the TE properties. The increased Eg is expected to

suppress the bipolar effects and improve ZT at high tempera-

tures. However, an increased dE can reduce band degeneracy

and thus reduce ZT. We have developed a TPB model to

quantify these two effects on the TE properties of

Mg2Si0.4Sn0.6�yGey. The model considers two conduction

bands, namely, the light conduction band 1 and the heavy

conduction band 2, and one valence band 3, which are shown

in Fig. 4(a). Based on this TPB model, we derived equations

of Seebeck coefficient (S), electrical conductivity (r), and

Hall coefficient (RH) by following the classic two-band

model. The detailed derivation procedure is presented in

Appendix A. The equations are listed as follows:

S ¼ S1r1 þ S2r2 þ S3r3

r1 þ r2 þ r3

; (1)

r ¼ r1 þ r2 þ r3; (2)

and

RH ¼
RH;1r2

1 þ RH;2r2
2 þ RH;3r2

3

r1 þ r2 þ r3ð Þ2
: (3)

Here, Si, ri, and RH,i stand for the partial Seebeck coefficient,

electrical conductivity, and Hall coefficient of band i with

i¼ 1, 2, and 3, respectively. The detailed equations of Si, ri,

and RH,i can be found in Appendix B.

A self-consistent band gap Eg¼ 0.42 eV of

Mg2Si0.4Sn0.6 was obtained by fitting the measured transport

properties of two Mg2Si0.4Sn0.6 samples with different Sb

doping. The conduction bands separation (dE) of

Mg2Si0.4Sn0.6, 0.04 eV is adopted from the literature.30–32

All the modeling parameters of Mg2Si0.4Sn0.6, both fitted

and adopted from the literature, are listed in Appendix C,

Table II. Subsequently, as shown in Fig. 4(b), the Eg and dE
values for Ge-substituted samples are estimated based on

those of Mg2Si0.4Sn0.6 and the linear extrapolation of DFT

results: Eg¼ 0.47 eV; dE¼ 0.09 eV for Mg2Si0.4Sn0.5Ge0.1

and Eg¼ 0.52 eV; dE¼ 0.14 eV for Mg2Si0.4Sn0.4Ge0.2. By

only replacing the band gap (Eg) and conduction-band separation

(dE) in the TPB model, we then calculated the transport proper-

ties of Mg2Si0.4Sn0.5Ge0.1 and Mg2Si0.4Sn0.4Ge0.2. The detailed

fitting and calculation procedures are presented in

Appendixes C and D. Fig. 5(a) displays the modeling results

together with the experimental data of power factor (PF) for

Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and 0.2) with the Hall coeffi-

cients of 2.4(60.2)� 10�8 m3 C�1. A good match between

the experimental results and calculation curves indicates that

the increase of Eg and dE is primarily responsible for the

changes of TE properties in Mg2Si0.4Sn0.6�yGey (y¼ 0.1 and

0.2).

As mentioned earlier, the conduction-band separation

and band-gap widening have competing effects on TE prop-

erties. In order to demonstrate these two effects, we have cal-

culated the power factor of a hypothetical material with an

increased band gap (Eg¼ 0.52 eV) but converged conduction

bands (dE¼ 0.04 eV), shown in Fig. 5(a). The negative effect

of increasing dE is clear when comparing Mg2Si0.4Sn0.4Ge0.2

to the hypothetical materials: the PF in Mg2Si0.4Sn0.4Ge0.2 is

reduced due to the loss of band degeneracy (increased dE).

The reduction, however, becomes less significant at high

temperatures where the Fermi window, 2kBT, (i.e., 0.138 eV

FIG. 3. The electronic band structures of (a) Mg2Si0.375Sn0.625 and (b) Mg2Si0.375Ge0.625 obtained by DFT calculation. The blue and green bands represent the

two bands folded from the original X points along the C–X line in ky direction in the primitive cell representation; the magenta bands near the conduction band

bottom are folded from the original X points at kx and kz directions in the primitive cell representation. (c) Zone-folding effect represented in the first Brillouin

zone upon the use of 2� 2� 2 supercell.

FIG. 4. (a) Schematically illustrated electronic band structures of

Mg2Si0.4Sn0.6�yGey in a primitive cell representation, where the blue curve

indicates the heavy conduction band (CBH) and the green curve indicates the

light conduction band (CBL); and (b) Ge composition-dependent conduction

band energies relative to the valence band.
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at 800 K) becomes comparable to the conduction-band sepa-

ration in Mg2Si0.4Sn0.4Ge0.2, dE¼ 0.14 eV. On the other

hand, by comparing the calculated PF of the hypothetical

materials to that of Mg2Si0.4Sn0.6, it is clear that the increase

of PF by eliminating bipolar effects (increased Eg) becomes

significant at temperature above 650 K. In summary, an

increased dE reduces PF in Mg2Si0.4Sn0.6�yGey (y¼ 0.1 and

0.2) at low temperatures. As temperature increases, however,

the effect of dE decreases and the elimination of bipolar

effect becomes obvious. Finally, the calculation suggests

that Ge substitution can lead to a maximum PF value similar

to that in Mg2Si0.4Sn0.6, while the temperature for the peak

PF is increased.

The TPB model also enables the calculation of elec-

tronic and bipolar thermal conductivities, as shown in Fig.

5(b). The derivation details of je and jb can be found in

Appendix A. The electronic thermal conductivity is calcu-

lated by

je ¼ je;1 þ je;2 þ je;3; (4)

where the partial electronic thermal conductivity is related to

the partial electrical conductivity of each band by the

Wiedemann-Franz relationship, je,i¼ Li�ri� T, where Li is

the partial Lorenz number of each band. In addition, the

bipolar thermal conductivity can be calculated as

jb ¼
S1 � S2ð Þ2r1r2

r1 þ r2 þ r3

T þ S2 � S3ð Þ2r2r3

r1 þ r2 þ r3

T

þ S3 � S1ð Þ2r3r1

r1 þ r2 þ r3

T: (5)

The results shown in Fig. 5(b) clearly suggest the bipolar

thermal conductivity in Ge-substituted samples is effectively

suppressed. The electronic contribution to the thermal con-

ductivity in Ge-substituted samples are increased due to their

higher electrical conductivity. The increase of electrical con-

ductivity in Ge-substituted samples is owing to the improved

average carrier mobility: as the conduction bands separation

increases in Ge-substituted samples, more electrons are

conducted in the lighter band and have higher carrier mobil-

ity since the mobility is inversely proportional to m
�5=2
b as an-

alyzed in Appendix B. The lattice thermal conductivity is

then obtained by subtracting electronic and bipolar contribu-

tions from the total thermal conductivity. The results shown

in Fig. 5(c), even when taking into account the measurement

uncertainty, suggest that Ge substitutions maintain, if not

further reduce, the low lattice thermal conductivity in

Mg2Si0.4Sn0.6. This trend could be intuitively understood by

that Ge atoms introduce an extra degree of structure disor-

derness in the solid solution. Coincidentally, Kyratsi et al.
reported low lattice thermal conductivities in Bi-doped

Mg2Si0.4Sn0.55Ge0.05. They believed the introduction of Ge

FIG. 5. (a) Temperature-dependent power factor of Sb-doped Mg2Si0.4Sn0.6–yGey (y¼ 0, 0.1, and 0.2) with Hall coefficient of 2.4(60.2)� 10�8m3 C�1

obtained by experimental measurements (scattered symbols) and TPB-model calculation (solid lines). The black dashed curve represents the power factor of a

hypothetical material with the same Hall coefficient. (b) The electronic and bipolar thermal conductivities for Sb-doped Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and

0.2) with Hall coefficient of 2.4(60.2)� 10�8m3 C�1 calculated based on TPB model and (c) lattice thermal conductivities of Sb-doped Mg2Si0.4Sn0.6�yGey

(y¼ 0, 0.1, and 0.2).

TABLE II. Material-related parameters employed in TPB model for fitting

the electrical transport properties of Mg2Si0.4Sn0.6 samples with two differ-

ent carrier concentrations.

Parameters Literature values Employed values

Band gap, Eg (eV) 0.61,10 0.5437 0.42a

Temperature coefficient of Eg,
dEg

dT (10�4 eV K�1)

�1.6,31 �3.2837 �3.5b

Conduction band separation,

dE (eV)

0.061,31 0.03832 0.04b

Density-of-states effective

mass of band 1, m�d;1 (m0)

0.475,31 0.7637 1.5a

Density-of-states effective

mass of band 2, m�d;2 (m0)

1.2,31 0.9837 2.4a

Degeneracy of band 1, Nv,1 335 3

Degeneracy of band 2, Nv,2 335 3

Density-of-state effective mass

of band 3, m�d;3 (m0)

1.4531 1.45b

Mass density, q (g cm�3) N/A 3.0c

Sound velocity in longitudinal

direction, vL (m s�1)

540034 5400b

Number of atoms per unit vol-

ume, N0 (m�3)

N/A 4.17� 1028c

Fractional alloy composition, x 0.6 0.6

Acoustic phonon deformation

potential, Eph (eV)

13,34 8.77–9.43,35 8.4637 6.73a

Alloy deformation potential,

Eal (eV)

0.72,34 0.32–0.3935 0.95a

aValue extracted from measured transport properties.
bValue obtained from the literatures.
cValue calculated based on density measurement and Rietveld refinement.
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increased the complexity of microstructures due to the

formation of Ge-rich phase.33 In comparison, increasing Si

content in Mg2Si1�xSnx might suppress the bipolar effects

just as Ge substitution does; however, it may not simultane-

ously reduce the lattice thermal conductivities. In contrast,

the lattice thermal conductivity of Mg2Si0.5Sn0.5 and

Mg2Si0.6Sn0.4 were reported to be higher than that in

Mg2Si0.4Sn0.6.11,24

After analyzing the power factor and thermal conductiv-

ity of Mg2Si0.4Sn0.6�yGey (y¼ 0, 0.1, and 0.2), we proceed

to revisit the ZT in Mg2Si0.4Sn0.5Ge0.1. As shown in Figs.

2(b) and 5(a), the maximum PF and a minimum j of

Mg2Si0.4Sn0.6 both locate around 650 K while those of

Mg2Si0.4Sn0.5Ge0.1 are found around 800 K. The peak Z,

equals to PF
j , in these two samples remain almost unchanged.

Therefore, the likely small increase of ZT in Mg2Si0.4

Sn0.5Ge0.1 at high temperatures is primarily caused by the

increased peak temperature of Z owing to the bipolar-effect

elimination.

IV. CONCLUSION

Our experimental results show that Ge substitutions in

Mg2Si0.4Sn0.6�yGey (y¼ 0.1, 0.2) effectively decreased the

undesirable bipolar effect presented in the parent compound

Mg2Si0.4Sn0.6. For the samples with the same Hall coeffi-

cients and thus similar carrier concentrations, the ZT of

Mg2Si0.4Sn0.5Ge0.1 is improved slightly compared to that of

Mg2Si0.4Sn0.6 at temperatures above 650 K, although the

opposite trend is found at lower temperatures. The DFT cal-

culation suggests that Ge substitution results in not only

band-gap widening, but also conduction-band splitting in

Mg2Si0.4Sn0.6�yGey. The band-gap widening contributes to

the elimination of bipolar conduction at high temperatures,

whereas the splitting of two conduction bands is responsible

for the reduced TE performance at low temperatures. To

quantitatively understand these two competing effects on

thermoelectric properties, we developed a triple-parabolic-

band model to analyze the TE properties of Mg2Si0.4Sn0.6�y

Gey(y¼ 0, 0.1, and 0.2). The modeling results suggest that

Ge substitution shifts the peak of power factor of Mg2Si0.4

Sn0.6�yGey to higher temperatures without reducing its peak

value. In addition, calculation also indicates that Ge substitu-

tions not only largely suppress the bipolar thermal conduc-

tivity but also effectively maintain, or slightly reduce, the

lattice thermal conductivity of Mg2Si0.4Sn0.6 by increasing

the structure disorder.

The bipolar-effect elimination and the low lattice ther-

mal conductivity, both induced by Ge substitution, contrib-

ute together to the slightly improved ZT in Mg2Si0.4Sn0.5

Ge0.1 at high temperatures. Based on these findings, addi-

tional studies can be conducted to optimize the Ge substitu-

tion level to balance the trade-off of increasing Eg and dE, to

optimize the carrier concentration to improve ZT while

suppressing the bipolar effect, and to introduce other dopants

or secondary phase to further reduce the lattice thermal

conductivity.

Note: After the manuscript was submitted, we became

aware of the work by Liu et al.22 They have studied the Ge

doping effects on thermoelectric properties in Mg2Sn. Their

results are consistent with the conclusions in our paper.

ACKNOWLEDGMENTS

This work was supported by National Science

Foundation (NSF)-Department of Energy (DOE) Joint

Thermoelectric Partnership (NSF Award No. CBET-

1048767). The SPS equipment used for materials synthesis

was acquired with the support of a NSF Major Research

Instrumentation (MRI) award (DMR-1229131). The PPMS

instrument for Hall and electrical transport measurements

was acquired with the support of the NSF Materials

Interdisciplinary Research Team (MIRT) award (DMR-

1122603).

APPENDIX A: DERIVATION OF TRANSPORT
EQUATIONS BASED ON THE TRIPLE-PARABOLIC-
BAND MODEL

In the TPB model, the calculations of Seebeck coeffi-

cient (S), electrical conductivity (r), Hall coefficient (RH),

electronic thermal conductivity (je), and bipolar thermal

conductivity (jb) consist of the contributions from three

bands: the light conduction band 1 and the heavy conduction

band 2 and one valence band 3. The derivation of equations

described below mostly follows the two-band model in the

book by Nolas et al.14

1. Electrical conductivity

The electric current density, j, consists of contributions

from 3 bands

j ¼ j1 þ j2 þ j3; (A1)

and current density in each band is driven by both external

electric field and Seebeck effect

ji ¼ ri �
@U
@x
� Si

@T

@x

� �
; (A2)

where U is the electrochemical potential, ri and Si are the

partial electrical conductivity and Seebeck coefficient of

each band. Given the temperature gradient @T
@x ¼ 0

j ¼ r1 þ r2 þ r3ð Þ �
@U
@x

� �
: (A3)

Thus, Eq. (2) is obtained.

2. Seebeck coefficient

Seebeck coefficient is defined as the voltage build up

under a small temperature gradient in a steady state where

the electric current density j¼ 0. From Eqs. (A1) and (A2)

r1 þ r2 þ r3ð Þ �
@U
@x

� �
¼ r1S1 þ r2S2 þ r3S3ð Þ � @T

@x

� �
:

(A4)

Thus, Eq. (1) for the Seebeck coefficient is obtained.
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3. Electronic and bipolar thermal conductivity

Next, we proceed to investigate the heat flux density, w,

carried by electrons or holes in 3 bands

w ¼ w1 þ w2 þ w3: (A5)

The heat flow is driven not only by the temperature gradient

but also by the Peltier effect

wi ¼ SiTji � je;i
@T

@x
: (A6)

Thermal conductivity is defined in the absence of electric

current, i.e., j¼ 0, which keeps Eqs. (A4) and (1) valid. This

allows us to rearrange Eq. (A2) as follows:

ji ¼ ri S� Sið Þ @T

@x
: (A7)

By plugging Eqs. (A6) and (A7) into (A5), we obtained

w ¼� je;1 þ je;2 þ je;3ð Þ
@T

@x
þ T½ðS1r1 S� S1ð Þ

þ ðS2r2 S� S2ð Þ þ S3r3 S� S3ð Þð � @T

@x
: (A8)

After inserting Eq. (1) into the second part of Eq. (A8), we

obtained

w ¼ � je;1 þ je;2 þ je;3ð Þ
@T

@x
� S1 � S2ð Þ2r1r2

r1 þ r2 þ r3

T

"

þ S2 � S3ð Þ2r2r3

r1 þ r2 þ r3

T þ S3 � S1ð Þ2r3r1

r1 þ r2 þ r3

T

#
@T

@x
: (A9)

Therefore, the total thermal conductivity contributed by

charge carriers is

je;tot ¼ je;1 þ je;2 þ je;3ð Þ þ
S1 � S2ð Þ2r1r2

r1 þ r2 þ r3

T

"

þ S2 � S3ð Þ2r2r3

r1 þ r2 þ r3

T þ S3 � S1ð Þ2r3r1

r1 þ r2 þ r3

T

#
; (A10)

where the first part of Eq. (A10), as shown in Eq. (4), is the

sum of the partial electronic thermal conductivity of each

band. This part is sometimes called the electronic thermal

conductivity. It is important to distinguish this part from the

total electronic thermal conductivity je,tot. The second part

of Eq. (A10), as shown in Eq. (5), is the sum of the thermal

conductivity originated from the Peltier effect interacting

between bands. This is the so-called bipolar thermal

conductivity.

4. Hall coefficient

To derive the Hall coefficient for the TPB model, we

first assign the Hall carrier concentration in each band to be

n1, n2, and n3. Here, n1, n2 are the electron concentration and

n3 is the hole concentration. The Hall measurement is carried

out on a rectangular sample with the presence of a magnetic

field (Bz) perpendicular to the sample. The current at x direc-

tion (Jx) and the voltage (Ey) at y direction are measured

while the current at y direction (Jy) is zero. Jy consists of the

contributions of three bands

Jy ¼ en1v1;y þ en2v2;y þ en3v3;y ¼ 0; (A11)

where v1,y (i¼ 1, 2, 3) is the drift velocity at y direction of

carriers in band i. The carriers are driven by not only the

electrostatic force, but also the Lorentz force:

vi,y¼li(Eyþ vi,xBz). Thus, Eq. (A11) can be rearranged as

Eyðn1l1 þ n2l2 þ n3l3Þ
¼ BzExð�n1l1

2 � n2l2
2 þ n3l3

2Þ: (A12)

The current in the x direction can be expressed as

Jx¼ en1v1,xþ en2v2,xþ en3v3,x. Since there is no net current

in the y direction, Jx is free of the Lorentz term. Thus,

Jx¼ eEx(n1l1þ n2l2þ n3l3). By replacing Ex in Eq. (A12)

with Jx, we thus obtain the expression of RH for the TPB

model

RH ¼ Ey=Jx

� �
=Bz

¼ �n1l1
2 � n2l2

2 þ n3l3
2

e n1l1 þ n2l2 þ n3l3ð Þ2
: (A13)

For each band i, the partial electrical conductivity and Hall

coefficient are ri¼ enili and RH,i¼61/eni. Thus, Eq. (A13)

can be expressed by the partial Hall coefficient of each band,

as presented in Eq. (3). It should be pointed out that ni and li

employed in this derivation of RH are actually the Hall car-

rier concentration nH,i and Hall mobility lH,i, respectively.

The subscript H was previously neglected for simplicity. The

relationship between Hall carrier concentration and actual

carrier concentration is nH;i ¼ ni

rH;i
, between Hall mobility and

actually mobility is lH,i¼lirH,i. Here, rH,i is the Hall factor

of band i, the detailed equation of which will be introduced

Appendix B.

APPENDIX B: EQUATIONS OF PARTIAL TRANSPORT
PROPERTIES OF EACH BAND

As derived in Appendix A, Seebeck coefficient (S), elec-

trical conductivity (r), and Hall coefficient (RH) can be cal-

culated based on the partial transport properties Si, ri, and

RH,i of each band. Here, we list the equations for these partial

transport properties as follows.

The partial Seebeck coefficient contribution from band i
is represented as

Si ¼
kB

e

r þ 5

2

� �
F3

2
þr nið Þ

r þ 3

2

� �
F1

2
þr nið Þ

� ni

2
6664

3
7775; (B1)

where kB is the Boltzmann constant, e is the elemental

charge, and ni ¼ Ef�Ei

kBT is the reduced Fermi level for band i

with the band edge located at Ei. In this TPB model, n1 ¼
Ef�E1

kBT ; n2 ¼ n1 � dE
kBT and n3 ¼ �n1 � Eg

kBT. r is the scattering
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parameter, which takes the value of �0.5 for both alloy

scattering and acoustic phonon scattering mechanisms14 pre-

sented in Mg2SixSn1�x solid solutions.34,35 The partial elec-

trical conductivity and Hall coefficients are given as

ri ¼ nieli (B2)

and

RH;i ¼
rH;i

nie
; (B3)

respectively, where ni is the carrier concentration conducted

in each band (i¼ 1, 2, and 3)

ni ¼
1

2p2�h3
2kBTð Þ

3
2m�d;i

3
2F1

2
nið Þ; (B4)

and rH,i is the Hall factor in band i and given as

rH;i ¼
3

2

2r þ 3

2

� �

r þ 3

2

� �2

F1
2

nið ÞF1
2
þ2r nið Þ

2Frþ1
2

2 nið Þ
: (B5)

In the above equations, Fn(ni) is the Fermi-Dirac integral

Fn nið Þ ¼
ð1

0

xn

1þ ex�ni
dx; (B6)

m�d;i is the density-of-states effective mass of band i and li is

the drift mobility of charge carriers in band i. In

Mg2SixSn1�x solid solutions, we should take into account

two primary carrier scattering mechanisms including alloy

scattering and acoustic phonon scattering.34,35 Thus, li is

obtained from the Matthiessen’s rule

1

li

¼ 1

lal;i

þ 1

lph;i

; (B7)

where lal,i is the carrier mobility resulting from pure alloy

scattering34

lal;i ¼
16e�h4

9
ffiffiffi
2
p

px 1� xð Þ kBTð Þ
1
2

N0

Eal
2m�b;i

3
2m�I;i

F0 nið Þ
F1

2
nið Þ

; (B8)

and lph,i is the carrier mobility resulting from acoustic pho-

non scattering34

lph;i ¼
ffiffiffi
2
p

pe�h4

3 kBTð Þ
3
2

vL
2q

Eph
2m�b;i

3
2m�I;i

F0 nið Þ
F1

2
nið Þ

: (B9)

Here, �h, x, N0, vL, and q are the reduced Planck constant, the

fractional alloy composition, number of atoms per unit vol-

ume, longitudinal sound velocity, and sample density,

respectively. Eal and Eph is the alloy and acoustic phonon de-

formation potential constant, respectively. In addition, mb;i
�

is the single valley density-of-states effective mass of band i,
related to md;i

� by md;i
� ¼ Nv;i

2
3mb;i

�. Nv,i is the valley degen-

eracy of band i. mI;i
� is the inertia effective mass of the val-

ley, which relates carrier mobility l to its relaxation time s.

In Mg2(Si, Sn, and Ge) solid solutions, the constant energy

surface of conduction band is ellipsoidal because their band

edges locate at the X point of the Brillouin zone. In this case,

mI;i
� is not equivalent but proportional to mb;i

� by
mb;i

�

mI;i
�

¼ 1
K

� �2
3 ð2Kþ1Þ

3
,36 where K is the ratio of longitudinal (ml) to

transverse (mt) effective mass of the ellipsoidal constant

energy surface. Thus, the carrier mobility l is proportional

to mb
��5

2 of the conducting band.

As mentioned earlier, the partial electronic thermal con-

ductivity is related to the partial electrical conductivity by

the Wiedemann-Franz relationship, je,i¼ Li�ri� T, where

Li is the partial Lorenz number

Li ¼
kB

e

� �2 r þ 7

2

� �
Frþ5

2
nið Þ

r þ 3

2

� �
Frþ3

2
nið Þ
�

r þ 7

2

� �
Frþ5

2
nið Þ

r þ 3

2

� �
Frþ3

2
nið Þ

2
6664

3
7775

2
2
66664

3
77775:

(B10)

APPENDIX C: FIT PARAMETERS OF ELECTRICAL
TRANSPORT PROPERTIES OF Mg2Si0.4Sn0.6

By fitting the measured transport properties of the two

Mg2Si0.4Sn0.6 samples with different carrier concentrations,

we obtained some of the fundamental parameters, as listed in

Table II.

1. Calculation of m1
�; m2

�; n1;300K1n2;300K

First of all, we obtained density-of-states effective

masses of two conduction bands (m1
� and m2

�) and activated

dopant concentrations (nd
þ) from S, r, and RH results meas-

ured at room temperature, where the contribution of valence

band 3 is negligible. For the two Mg2Si0.4Sn0.6 samples

with different Hall coefficients of a and b, their S, r, and RH

are functions of (m1;a
�; m2;a

�; l1;a; l2;a; n1;a; n2;a) and

(m1;b
�; m2;b

�; l1;b; l2;b; n1;b; n2;b), respectively. We assume

that the bottoms of each conduction bands are parabolic so

that density-of-states effective masses remain the same

where the Fermi level changes slightly inside the band bot-

tom. With this assumption, m1;a
� ¼ m1;b

� ¼ m1
� and m2;a

� ¼
m2;b

� ¼ m2
�. Meanwhile, n2 is related to n1 by n2 ¼ n1 � dE

kBT
where dE¼ 0.04 eV for Mg2Si0.4Sn0.6; and l2 is related to l1

by l2 ¼ l1
m�

1

m�
2

� �5
2

where their band degeneracy are the same.

Up to this point, all six measured parameters, Sa, ra, RH,a,

Sb, rb, and RH,b, are the functions of six variables, namely,

m1
�; m2

�; l1;a; l1;b; n1;a, and n1,b. We were thus able to

numerically extract the values of m1
�; m2

�; l1;a; l1;b; n1;a,

and n1,b from these 6 equations. With the obtained m1
�; m2

�,
and n1, we can calculate the electron concentration at 300 K,

n1,300Kþ n2,300K by Eq. (B4).

2. Calculation of temperature-dependent reduced
Fermi level ni,T

Next we calculated the temperature-dependent reduced

Fermi level (ni,T) from the charge neutrality equation. As

temperature increases, the intrinsic electrons from valence
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band 3 are thermally excited to band 1 and 2, which also cre-

ates holes in valence band 3. Thus, the charge neutrality

equation is expressed as n1;T þ n2;T ¼ nd
þ þ n3;T , where nd

þ

is the activated dopant concentration. With the assumption

that all dopants have been activated at room temperature, nd
þ is

equal to the electron concentration at 300 K, n1,300K þ n2,300K,

which was calculated above. At any specific temperature T, ni,T

is the function of mi
� and ni,T. We adopted the value of m1

� and

m2
� obtained earlier and m3

� from the literature.31 Meanwhile,

n2,T and n3,T are related to n1,T by n2;T ¼ n1;T � dE
kBT and n3;T ¼

�n1;T � Eg
T

kBT where Eg
T ¼ Eg

0 þb� T. dE is the conduction

band separation energy, E0
g is the band gap at 0 K, and b is the

temperature dependence of the band gap. We adopted

dE¼ 0.04 eV and the value of b, �3.5� 10�4eV/K, from the

literature.32,37 Thus, with any given E0
g; n1;T became the only

variable in the charge neutrality equation and could be numeri-

cally calculated at any specific temperature.

3. Fit band gap E0
g and deformation potential

constants Eph and Eal

By pre-defining a value of E0
g, we could calculate the

temperature-dependent n1,T and the temperature-dependent

Seebeck coefficient by plugging the as-obtained n1,T into

Eqs. (B1) and (1). By plugging Eq. (B4) and the relationship

li / m�b;i
�5

2
F0ðniÞ
F1

2
ðniÞ into Eq. (B2), we derive that at any specific

temperature, partial electrical conductivity ri is proportional

to
Nv;i

m�
b;i

F0ðniÞ. Combining this derived result with Eqs. (B1)

and (1), it is clear that the value of Seebeck coefficient only

depends on 3 sets of variables: reduced Fermi level ni,T, band

degeneracy Nv,i, and effective mass m�b;i of each band. With

known m�b;i and Nv,i, the only variables are the E0
g-associated

ni,T. By fitting the temperature-dependence of Seebeck coef-

ficient, we thus obtained the self-consistent band gap

E0
g¼ 0.42 eV of Mg2Si0.4Sn0.6.

Subsequently, we calculated the temperature-dependent

electrical conductivity and then extracted the two deforma-

tion potential constants Eph and Eal by fitting the temperature-

dependence of electrical conductivity. Since the ratio

between m�b;i and m�I;i is unknown, we took it to be unity. This

shall not affect the fitting and calculation because the actual

ratio would be absorbed into the deformation potential con-

stants, Eph and Eal. However, for the purpose of calculating

the accurate deformation energy potential constants, future

effort should be made to define the accurate
m�b;i
m�I;i

ratio. Both

the fitted and experimental Seebeck coefficient and electrical

conductivity of Mg2Si0.4Sn0.6 are shown in Fig. 6(a).

APPENDIX D: CALCULATION OF TRANSPORT
PROPERTIES OF Mg2Si0.4Sn0.5Ge0.1 AND
Mg2Si0.4Sn0.4Ge0.2

With parameters obtained by fitting the electrical prop-

erties of Mg2Si0.4Sn0.6, now we proceed to calculate the

transport properties of Ge-substituted samples. The small

conduction band separation (dE) in Mg2SixSn1�x solid solu-

tion has been believed to be the key factor to its high TE

performance. On the other hand, the bipolar effect resulted

from the small band gap (Eg) could significantly suppress the

TE properties at high temperatures. Therefore, we altered

only these most important parameters, the band gap (E0
g) and

the conduction-band separation (dE) while assuming other

modeling parameters remain similar as in Mg2Si0.4Sn0.6.

1. Calculation of activated dopant concentration
from room-temperature RH

The extrinsic electron concentrations n1,300K þ n2,300K

were calculated based on room-temperature RH results. From

Eqs. (B3) and (3), combined with previous derivation,

FIG. 6. (a) Fitted temperature dependence of Seebeck coefficient and electri-

cal conductivity of two Mg2Si0.4Sn0.6 samples with two different carrier con-

centrations, with comparison to the experimental results; (b) and (c)

temperature dependences of Seebeck coefficient and electrical conductivity

of Mg2Si0.4Sn0.5Ge0.1 and Mg2Si0.4Sn0.4Ge0.2 samples calculated by TPB

model with comparison to experimental results. The lines represent calcula-

tion results, while the symbols are experimental data. The dashed lines (hol-

low symbols) represent the samples with high Hall coefficients, while the

solid lines (filled symbols) represent the samples with low Hall coefficients.
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ri / Nv;i

m�
b;i

F0ðniÞ, it is clear that the RH is a function of

Nv;i; m�b;i, and ni (i¼ 1,2). With known Nv,i and m�b;i and the

relationship between n2,300K and n1,300K, i.e., n2;300K

¼ n1;300K � dE
kBT, it is straightforward to calculate n1,300K and

thus n1,300Kþ n2,300K from the room-temperature RH results.

2. Calculation of temperature-dependent n1,T

from the charge neutrality equation

As temperature increases, the temperature-dependent

reduced Fermi level n1,T was obtained from the charge neu-

trality equation with known extrinsic carrier concentration

n1,300Kþ n2,300K, similar to the procedure we described in

Mg2Si0.4Sn0.6 case. With known n1,T, Eg, and dE, n2,T and

n3,T can be calculated.

3. Calculation of temperature-dependent S and r

By applying ni,T (i¼ 1, 2, 3) into related equations, we

thus calculated the temperature-dependent partial transport

properties, Si and ri (i¼ 1, 2, 3). The total S and r were cal-

culated by using Eqs. (1) and (2). As shown in Figs. 6(b) and

6(c), the calculated S and r results agreed well with experi-

mental data.

APPENDIX E: CALCULATION OF TEMPERATURE-
DEPENDENT je AND jb OF Mg2Si0.4Sn0.62yGey

(y 5 0, 0.1, and 0.2)

By plugging ni,T (i¼ 1, 2, 3) into related equations, we

obtained Li, ri, and thus je by using Eq. (4). By plugging Si

and ri (i¼ 1, 2, 3) into Eq. (5), we then calculated the jb.
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