
THE JOURNAL OF CHEMICAL PHYSICS 140, 044115 (2014)

Unification of algorithms for minimum mode optimization
Yi Zeng,1,a) Penghao Xiao,2,a) and Graeme Henkelman2,b)
1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA
2Department of Chemistry and the Institute for Computational and Engineering Sciences, University of Texas
at Austin, Austin, Texas 78712, USA

(Received 6 November 2013; accepted 6 January 2014; published online 30 January 2014)

Minimum mode following algorithms are widely used for saddle point searching in chemical and ma-
terial systems. Common to these algorithms is a component to find the minimum curvature mode of
the second derivative, or Hessian matrix. Several methods, including Lanczos, dimer, Rayleigh-Ritz
minimization, shifted power iteration, and locally optimal block preconditioned conjugate gradient,
have been proposed for this purpose. Each of these methods finds the lowest curvature mode it-
eratively without calculating the Hessian matrix, since the full matrix calculation is prohibitively
expensive in the high dimensional spaces of interest. Here we unify these iterative methods in the
same theoretical framework using the concept of the Krylov subspace. The Lanczos method finds the
lowest eigenvalue in a Krylov subspace of increasing size, while the other methods search in a smaller
subspace spanned by the set of previous search directions. We show that these smaller subspaces are
contained within the Krylov space for which the Lanczos method explicitly finds the lowest curvature
mode, and hence the theoretical efficiency of the minimum mode finding methods are bounded by the
Lanczos method. Numerical tests demonstrate that the dimer method combined with second-order
optimizers approaches but does not exceed the efficiency of the Lanczos method for minimum mode
optimization. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862410]

I. INTRODUCTION

An important challenge in chemical and materials sci-
ence is the simulation of the dynamics of systems over long
time scales. Most chemical reactions cannot be simulated di-
rectly with traditional molecular dynamics (MD) simulations
due to their limited accessible time scales. However, using the
harmonic approximation to transition state theory,1, 2 which is
generally valid for solid state systems at moderate tempera-
ture, any reaction rate can be determined from the reactant and
transition states. Once these states are located, the dynamics
of rare-event systems can be evolved by a kinetic Monte Carlo
algorithm over time scales much longer than is possible with
MD. Thus the challenge of studying such chemical reactions
can be transformed into the task of searching for the saddle
points (transition states) connected to a given minimum (re-
actant). Due to the high dimensionality and expensive force
evaluation of chemical systems, great efforts have been made
in developing efficient saddle point searching algorithms. A
family of these algorithms, called minimum-mode following
algorithms, employs the following evolution equation:

ẋ = F (x) − 2(τ̂TF (x))τ̂ , (1)

where x is the position vector, −F(x) is the gradient of the po-
tential energy surface V (x), and τ̂ is the unit vector along the
minimum curvature mode direction. We denote H = ∇∇V

and τ̂ as the unit eigenvector of H with the minimum eigen-
value. When H has only one negative eigenvalue, the above
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equation reverses the force along that eigenvector and con-
verges to a first-order saddle point. The efficiency of the algo-
rithm relies on an efficient update of τ̂ .

In this paper, we focus on the τ̂ updating algorithms that
avoid calculating the Hessian matrix H, since it is typically
too expensive to calculate directly for large chemical sys-
tems of interest. We examine several existing methods for
estimating τ̂ , including the Lanczos3 method as used in the
activation relaxation technique (ART-nouveau),4 the dimer
method,5–7 Raleigh-Ritz minimization8 as used in the hybrid
eigenvector following method,9 the shifted power iteration
method as used in the gentlest ascent dynamics method,10

and the locally optimal block preconditioned conjugate gra-
dient (LOBPCG) method.11 Here, these methods are unified
into the same mathematical framework so that their relative
theoretical efficiencies can be understood.

This paper is structured as follows. In Sec. II the Lanc-
zos method is presented with the essential idea of the Krylov
subspace behind the algorithm. Another widely used numer-
ical scheme, the dimer method, is presented in Sec. III. We
show that the dimer method searches for the lowest eigen-
vector of the Hessian within the same Krylov subspace as
the Lanczos algorithm. In Sec. IV we present the power it-
eration method with Rayleigh quotient shift. This method is
shown to be a special restarted case of the Lanczos algorithm
for which the convergence rate is significantly slower in high
dimensional space. In Sec. V we numerically compare the ef-
ficiency of the Lanczos algorithm, the dimer method coupled
with three different optimizers, and the shifted power iteration
method. Finally, we conclude in Sec. VI that the performance
of methods such as the dimer, which are limited to a subspace
of the same Krylov subspace as the Lanczos method, does
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not exceed Lanczos efficiency for finding the lowest curva-
ture mode.

II. LANCZOS ALGORITHM

The Lanczos algorithm is a specialized Arnoldi iteration
method of eigenvalue calculations for symmetric matrices.3

Before discussing the Lanczos algorithm, we first restate the
eigenvalue problem as a minimization problem in Theorem
1, and then review the concept of the Krylov subspace and
present the Lanczos algorithm based on Krylov subspace pro-
jection and search. In this section, we assume that the smallest
eigenvalue has multiplicity 1.

Theorem 1. Given a symmetric matrix H ∈ Rm×m, v is
the eigenvector associated with the smallest eigenvalue λ, if
and only if v solves the minimization problem,

min
b∈Rm\{0}

bTHb

bTb
. (2)

Proof. Since H is a symmetric matrix, all eigenvectors
v1, v2, · · · , vm form an orthogonal basis of the space Rm

and all eigenvalues of H are real numbers. We can write
b =

∑
i aivi , then we have,

bTHb

bTb
=

∑
i λia

2
i∑

i a
2
i

. (3)

This function takes its minimum value when b is equivalent to
the eigenvector v. Thus, v solves the minimization problem.

The other side of the statement follows from the
uniqueness of the eigenvector corresponding to the smallest
eigenvalue. !

Remark 1. Such an optimal solution v must be unique
also due to the uniqueness of the eigenvector associates with
the smallest eigenvalue.

Having transformed the eigenvalue problem to a mini-
mization problem, the minimization problem can be solved
as follows. We first solve the optimization problem in a low
dimension subspace, which can be done more easily than in
the original space Rm. Then we consider the optimal solution
in a space with one more dimension to find a better solution.
As we move to higher and higher dimensional subspaces, this
optimal solution will converge to the true solution. Here the
low dimensional subspace we will use is the Krylov subspace,
Kn, which is defined as in Remark 2.

Remark 2. The nth order Krylov subspace Kn generated
by a square matrix H ∈ Rm×m and a nonzero vector v ∈ Rm

is defined as

Kn = span{v, Hv, H2v, · · · , Hn−1v}. (4)

When n is smaller than the rank r of the matrix H, Kn is a
n-dimensional space; when n is greater or equal to r, Kn is
an r-dimensional space. The product Hv is calculated by the

following approximation:

Hv = F (x) − F (x + v)
||v||

+ O(∥v∥2). (5)

To solve the minimization problem in the Krylov sub-
space, a set of orthogonal basis is utilized. This basis can
be obtained by the Gram-Schmidt process iteratively as
shown in Refs. 12 and 13. We define such a basis for a n-
dimensional Krylov subspace Kn as Qn = [q1, q2, · · · , qn]
∈ Rm×n. Therefore, any vector b ∈ Kn can be represented by,
b = Qnr , where r ∈ Rn. Then the minimization problem pro-
jected on a Krylov subspace Kn can be solved, as shown in
Theorem 2.

Theorem 2. Qnr solves the minimization problem in the
Krylov subspace Kn

min
b∈Kn\{0}

bTHb

bTb
, (6)

if r is the eigenvector corresponding to the smallest eigen-
value of the matrix QT

nHQn.

Proof. Since any vector b ∈ Kn can be written as,
b = Qnrb

bTHb

bTb
= (Qnrb)THQnrb

(Qnrb)T(Qnrb)
=

rT
b

(
QT

nHQn

)
rb

rT
b rb

. (7)

By Theorem 1, the eigenvector r associated with the small-
est eigenvalue of the matrix QT

nHQn solves this minimization
problem. Therefore, the vector Qnr solves the original opti-
mization problem in the space Kn. !

Remark 3. By construction of the orthogonal basis Qn,
the matrix QT

nHQn is an upper Hessenberg matrix, e.g., an
upper triangular matrix plus a nonzero first subdiagonal. It is
also symmetric since H is symmetric and Qn is an orthogonal
basis. These two properties confirm that the matrix QT

nHQn is
tridiagonal.

Finally, the eigenvalue problem of an unknown matrix
H is transformed to an iterative series of calculations to find
the smallest eigenvalue of a known low dimensional matrix
QT

nHQn, which can be done efficiently, for example, by the
QR algorithm. In theory, this scheme is guaranteed to con-
verge if n grows to the rank of the matrix H, but in practice,
the convergence will be faster than this bound.14, 15

III. DIMER METHOD

The dimer method is another iterative algorithm
for minimum mode finding.5 With improvements in the
implementation,6, 7, 16, 17 the dimer method has become widely
used in calculations of chemical reaction rates especially
with forces evaluated from self-consistent electronic structure
methods.

We note that the Raleigh-Ritz optimization method used
in hybrid eigenvector following, as developed by the Wales
group,9 is based upon the same finite-difference gradient of
the Rayleigh quotient that is used in the dimer method. So
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while the methods are described using different language and
have some minor differences in their implementation, they
are equivalent for the purposes of this analysis. The same ap-
proach was also used previously by Voter to construct a bias
potential for the acceleration of MD in his hyperdynamics
method.18

In this section, we present the dimer method within the
same theoretical framework as the Lanczos algorithm. Nu-
merical comparisons have been previously made between
these two algorithms,17 but now, under this mathematical
framework, we can compare their relative theoretical effi-
ciency.

In the dimer method, the minimum curvature mode is de-
termined by rotating a pair of images separated by a small
distance ||v|| according to the torque acting on the dimer. The
torque is the force difference divided by the distance, and thus
has the same form as Hv in Eq. (5). Rotating along the torque
direction is the mechanism by which the dimer method finds
the minimum curvature mode in a specific subspace of the
Krylov subspace.

At each iteration, the new direction τ that minimizes τTHτ
τTτ

is found in the plane spanned by {v, Hv}, assuming the sim-
plest case in which the SD direction is taken for the rotation
plane. A second direction # is then constructed perpendicular
to v to form an orthogonal basis set Q2 = [v,#], reducing the
optimization problem to two dimensions,

# = Hv − (vTHv)v, (8)

A = QT
2 HQ2 =

⎛

⎝
vTHv vTH#

#THv #TH#

⎞

⎠. (9)

Here, calculating H# requires a second force evaluation,
F(x + #). The 2 × 2 matrix A can then be diagonalized. The
eigenvector τ , which is expressed as τ = r1v + r2#, is then
the starting point of the next iteration. Note that

Hτ = r1Hv + r2H#, (10)

can be obtained without any further force evaluation since Hv

and H# are already known, as pointed out in Ref. 7. The
minimization is repeated in a sequence of two-dimensional
spaces: span{v, Hv}, span{τ, Hτ }, · · · , where span{v, Hv} is
the Krylov subspace K2. Also because

Hτ = (r1 − r2(vTHv))Hv + r2H2v, (11)

τ and Hτ are in the Krylov subspace K3 = span{v, Hv, H2v}.
After the nth iteration, n force evaluations have been made,
which is the same number as in the Lanczos method. How-
ever, each two-dimensional space considered in the dimer
method is a subspace of Kn+1. Therefore, the dimer method
convergence is theoretically limited by that of the Lanczos
algorithm.

In previous descriptions of the dimer method, the above
procedure was done by finding a unit vector r̂ ∈ R2 to mini-
mize r̂TAr̂ , which is exactly the dimer energy in Ref. 5. The
connection between minimizing the dimer energy and solving
the eigenvector problem of Eq. (9) can be seen by expanding

r̂ by the unit eigenvectors of A,

r̂TAr̂ = (axv̂x + ayv̂y)TA(axv̂x + ayv̂y) = a2
xλx + a2

yλy,

(12)
where λx and λy are eigenvalues of the matrix A.

Theorem 3. The steepest descent dimer method is equiv-
alent to the Lanczos algorithm with restarts every two steps;
its theoretical efficiency must be lower than the Lanczos
algorithm.

When the rotation plane is determined by algorithms
based on the previous search direction #, as in the conju-
gate gradient (CG) algorithm, the dimer method is more ef-
ficient but remains under the limit of the Lanczos method.
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
for updating #, as well as the limited memory version (L-
BFGS),19 is even more efficient. When the initial Hessian is
set as a constant times the identity matrix (the standard case
in practice), BFGS/L-BFGS is also searching for the lowest
mode in the subspace of Kn+1 at iteration n. The LOBPCG
method performs the minimization in a three-dimensional
subspace, with one extra direction that is a linear combination
of the previous directions.11 The search space of LOBPCG
is therefore still a subspace of the Krylov subspace, and its
theoretical efficiency also cannot exceed the Lanczos limit.

IV. POWER ITERATION METHOD
WITH A RAYLEIGH SHIFT

Another method for finding the lowest curvature mode of
the Hessian is the power iteration method, which has been em-
ployed in some recent saddle point searching algorithms.10, 20

In this section, we present the motivation and mechanism of
the power iteration method with a Rayleigh shift, and prove
the convergence of this method. Similar to the dimer method,
we demonstrate that the search space of this method is con-
tained in the Krylov subspace Kn for the minimization prob-
lem of Eq. (2).

A. Derivation of the shifted power iteration method

The power iteration method is an iterative eigenvector
computation method which can be described as

vn+1 = Hvn

∥Hvn∥
, (13)

where H is a square matrix with eigenvalues λ1 < λ2

<= λ3 <= ... < λm and |λ1| < |λm|. In this scheme, vn will
converge to the eigenvector associated with eigenvalue λm as
n → ∞.13

We already know that all eigenvalues of our Hessian ma-
trix H are on the real axis. Moreover, if λ is an eigenvalue of
H associated with the eigenvector v, and I is the identity ma-
trix, then for any constant a ∈ R, a − λ is the eigenvalue of
a new matrix aI − H with eigenvector v. As a result, we can
linearly shift the desired eigenvalue to become the eigenvalue
with greatest absolute value without changing the eigenvec-
tor. Therefore, the power iteration method will converge to
our desired eigenvector if we find such a shift.
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To pick an appropriate shift, a, we use the current max-
imum absolute value of Rayleigh quotients at each iteration
plus a small increment,

an = max
{∣∣∣∣

vT
1 Hv1

vT
1 v1

∣∣∣∣ ,
∣∣∣∣
vT

2 Hv2

vT
2 v2

∣∣∣∣ , · · ·
∣∣∣∣
vT

n Hvn

vT
n vn

∣∣∣∣

}
+ log n.

(14)
The log n term is added to prevent the case where an − λ1

= −(an − λm), i.e. an = 0.5 ∗ (λ1 + λm), even though this
scenario is unlikely. With the dynamical update of the shift
constant an according to Eq. (14), the modified power itera-
tion method can be described,

vn+1 = (anI − H)vn

∥(anI − H)vn∥
. (15)

Theorem 4. The iterative algorithm shown in Eq. (15)
will converge to the eigenvector associated with the smallest
eigenvalue of H, if this eigenvalue has multiplicity 1.

Proof. Let λ1 be the smallest eigenvalue and λ2 the sec-
ond smallest one, by our assumption smallest eigenvalue has
multiplicity 1, λ1 < λ2.

The Rayleigh quotient is bounded by the maximal abso-
lute value of eigenvalues, which we assume to be L. Let v be
the true eigenvector we want to obtain, then the convergence
rate of the vn depends on the ratio of two eigenvalues which
are with largest absolute values.13 The convergence rate is,

∥vn − v∥ = O
(

n∏

k=1

L + log k − λ1

L + log k − λ2

)

→ 0, (16)

as n → ∞, which proves the convergence of the
algorithm. !

B. Krylov subspace of the shifted power
iteration method

While the convergence of the power iteration method
with a Rayleigh shift is guaranteed in principle, the conver-
gence is slow in practice. The resulting vn at the nth itera-

tion from this method is located in the Krylov subspace Kn+1,
which is defined in Remark 2. We will prove this statement
in Lemma 1 in order to conclude that the shifted power iter-
ation method will always converge slower than the Lanczos
algorithm.

Lemma 1. For any n > 0, vn ∈ Kn+1, where Kn+1

= span{v0, Hv0, · · · , Hnv0}.

Proof. We will prove this by induction.
When n = 1, v1 = (a1I − H)v0 = a1v0 + Hv0 ∈ K2.
Given vn ∈ Kn+1, we can write vn =

∑n
i=0 ciHiv0. Then,

vn+1 = (anI − H)vn = (anI − H)
n∑

i=0

ciHiv0 ∈ Kn+2. (17)

Thus, the statement holds for any general n > 0. !

Since the eigenvalue problem can be taken as a minimiza-
tion problem as shown in Theorem 1, the power iteration so-
lution is within the same Krylov subspace as the Lanczos al-
gorithm, with the same number of iterations. Therefore, the
convergence rate of the power iteration method is limited by
the Lanczos algorithm.

V. NUMERICAL TEST

In Secs. I– IV, we have compared the theoretical effi-
ciencies of the Lanczos algorithm, the dimer method, and
the shifted power iterative method. We proved that the con-
vergence rates of the later two methods are bounded by the
Lanczos algorithm due to the restriction of a smaller search
space than Lanczos at each step. In this section, we conduct a
numerical comparison to demonstrate our results in practice.

The convergence rates of the algorithms are compared
for Lennard-Jones clusters with 38 atoms. Geometry config-
urations are chosen randomly near saddle points where the
existence of one negative eigenvalue of the Hessian is guaran-
teed. A random direction is used as an initial guess for each of
the minimum-mode searches. More details of the benchmark
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FIG. 1. The angle, in radians, towards the true minimum mode as a function of iteration number (left) and a zoom in of the region of relevance for the Lanczos,
BFGS dimer, and CG dimer methods (right).
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TABLE I. Steps to convergence.

Method N̄ Max N Min N

Lanczos 25 54 13
BFGS dimer 27 65 13
CG dimer 29 80 13

system are discussed elsewhere.21, 22 The Lanczos method is
implemented with full reorthogonalization, which is faster by
one step on average than without reorthogonalization. The
dimer method is implemented with three optimizers for de-
termining the rotation plane: SD, CG, and BFGS. The ini-
tial Hessian for BFGS is taken as αI, where α is set to be
60 eV/Å2 and I is the identity matrix. Other α values tested
did not give significantly better results. When the rotation di-
rection from the BFGS becomes almost perpendicular (within
3◦) of the SD direction, the BFGS is restarted with the initial
Hessian. No parameters are needed for the other methods. All
the methods are implemented in the TSASE software.23, 24

The angle between the estimated lowest mode and the
true minimum mode is plotted at each iteration in a typical
run in Fig. 1. Clearly the Lanczos method is the fastest, while
the shifted power iteration and the SD dimer are significantly
slower. The CG dimer and the BFGS dimer are marginally
slower than Lanczos. The similar convergence trends of
these three methods indicate some commonality between
them.

The two slowest methods were not considered for fur-
ther study, but for the three competitive methods, 200 mini-
mum mode searches were run at different cluster geometries
for a more statistically significant comparison. A summary of
the results is presented in Table I. The convergence criteria
is that the angle to the true minimum mode is smaller than
0.14, which corresponds to an overlap (dot product of unit
vectors) greater than 0.99. We did not observe any case in
which the dimer method converges faster than Lanczos, al-
though in some cases they converge at the same rate. Typi-
cally, the BFGS dimer is faster than the CG dimer when a
reasonable initial Hessian value, α, is chosen. These numeri-
cal results are consistent with our theoretical conclusions.

VI. CONCLUSION

In summary, we have presented three classes of minimum
mode searching algorithms, the Lanczos algorithm, dimer
method, and the shifted power method, under the same math-
ematical framework of minimization in the Krylov subspace.
With a theoretical understanding of these methods, we can see
the dimer and shifted power methods are searching in a sub-
space of the Krylov subspace for which the Lanczos method

explicitly finds the minimum curvature mode. This leads to
the conclusion that with the same number of evaluations of the
potential gradient, the Lanczos algorithm will theoretically
converge no slower than the other two classes of methods.
The result of this research can provide theoretical guidance
for any future improvements to methods for finding the min-
imum curvature mode. Key to methods that can outperform
the Lanczos algorithm will be the determination of subspaces
that are outside of the Krylov subspace.
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