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The adaptive kinetic Monte Carlo method uses minimum-mode following saddle point searches and

harmonic transition state theory to model rare-event, state-to-state dynamics in chemical and

material systems. The dynamical events can be complex, involve many atoms, and are not

constrained to a grid—relaxing many of the limitations of regular kinetic Monte Carlo. By focusing

on low energy processes and asserting a minimum probability of finding any saddle, a confidence

level is used to describe the completeness of the calculated event table for each state visited. This

confidence level provides a dynamic criterion to decide when sufficient saddle point searches have

been completed. The method has been made efficient enough to work with forces and energies from

density functional theory calculations. Finding saddle points in parallel reduces the simulation time

when many computers are available. Even more important is the recycling of calculated reaction

mechanisms from previous states along the dynamics. For systems with localized reactions, the

work required to update the event table from state to state does not increase with system size. When

the reaction barriers are high with respect to the thermal energy, first-principles simulations over

long time scales are possible. © 2008 American Institute of Physics. �DOI: 10.1063/1.2976010�

I. INTRODUCTION

Classical molecular dynamics simulations are limited by

the time scales that can be accessed. An appropriate time step

for atomic systems is on the order of a femtosecond, so that

long trajectories are limited to nano- or microseconds. If

such trajectories are integrated using forces from costly first-

principles calculations, the accessible time scale is further

reduced to picoseconds. This leaves a gap of several orders

of magnitude between what can be simulated directly with

classical dynamics and the human time scale of seconds or

minutes. Most thermally activated chemical reactions take

place on this longer experimental time scale, so there is a

need for theoretical methods to model these important rare-

event dynamics.

A. Accelerated dynamics

There are several approaches to bridging the time scale

gap. Most progress has been made for systems in which the

dynamics are governed by rare events between states on the

potential energy surface. In these systems, statistical me-

chanics can be used to determine reaction rates so that the

correct state-to-state dynamics can be calculated without

having to model fast vibrational motion. Voter, in particular,

made significant advances in this field by developing a num-

ber of accelerated dynamics methods.1 These methods use a

variety of approaches to speed up the rate of escape from

each state visited in the dynamics. Parallel replica dynamics

provides a linear acceleration with the number of replicas by

running multiple trajectories in a state and accepting the first

escape.2 More acceleration is possible with hyperdynamics,

which uses a bias potential to raise potential minima while

leaving transition state regions unaltered,3 and temperature

accelerated dynamics,4 which increases the simulation tem-

perature to discover possible escape pathways. A strength of

these methods is that the approximations are well controlled,

so that conservative simulations recover the true dynamics.

Additional work, however, is needed to reduce the computa-

tional overhead for systems that require the accuracy of den-

sity functional theory �DFT� to evaluate forces between at-
oms. The acceleration approach presented here will focus on

such systems; with less control over the uncertainties but

also with a lower computational overhead, it is possible to

model long time scale dynamics from first principles.

B. Kinetic Monte Carlo

A popular method for modeling state-to-state dynamics

is kinetic Monte Carlo �KMC�.5,6 If all kinetic events that are
available to the system during the dynamics are known, as

well as their rates, KMC can be used to determine a statisti-

cally correct sequence of events and time scale for the dy-

namics. In the context of atomic simulations governed by

rare events, the reaction mechanisms and rates can be deter-

mined from a potential energy landscape using transition

state theory �TST�.7 KMC is very efficient, allowing for the
simulation of many millions of events with modest compu-

tational work. It is limited, however, in the range of systems

that can be simulated. The most severe limitation is that all

reaction mechanisms need to be identified at the outset of the

simulation. To limit this set of possible mechanisms, events

are generally described as the local movement of one or a

few atoms. Complex and long-range mechanisms, as well as

reactions with rates that are sensitive to their environment,

are not generally allowed in a KMC database because the

number of such events grows exponentially with their extent.a�Electronic mail: henkelman@mail.utexas.edu.
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There has been some work to characterize environment-

dependent rates, but it remains to be seen how general and

accurate these approaches are.8–10 Another limitation of

KMC is that the geometry of states must be matched to a

table of possible reaction events. The most common solution

to this matching problem is to restrict the simulation to a grid

on which all configurations are described.

C. Adaptive kinetic Monte Carlo

Many of the limitations of KMC are relaxed in the adap-

tive KMC �aKMC� approach.11 This method is very similar
to KMC with one important exception: the reaction mecha-

nisms available to the system are found during the simulation

instead of determined a priori. In aKMC, the dynamics can
take the system into unexpected configurations via complex

reaction mechanisms that could not be included in a standard

KMC event catalog.12 The method is described as “adaptive”

KMC because the list of possible events is not fixed—it

adapts to the simulation environment during the dynamics.

Another strength of aKMC is that there is no need to con-

strain the simulation to a grid or to define processes locally

in terms of a few atoms.

The benefits of aKMC come with a high computational

cost as compared to the regular KMC. From each new state

visited, all relevant kinetic events must be found. For sys-

tems in which harmonic transition state theory13,14 �hTST�
provides sufficiently accurate reaction rates, finding all ki-

netic events is equivalent to finding all first-order saddle

points leading from the current state to any new state. This

can be done with a “min-mode” following algorithm,15–17

which follows the lowest curvature mode from within a po-

tential basin up to a nearby saddle point. Once a saddle has

been found, the rate of the corresponding event is calculated

as

khTST =
�i=1
3N �i

init

�i=1
3N−1�i

‡e−�E‡−Einit�/kBT, �1�

where �i
init and �i

‡ are the ith stable normal-mode frequency
at the initial and saddle point states, respectively, N is the

number of particles moving in the transition, E‡ is the saddle
point energy, and Einit is the energy of the initial state. The
reaction mechanisms and rates are put in an event table and

the KMC algorithm advances the simulation to the next state.

Since the aKMC method is based on hTST, the impor-

tant dynamical events must be characterized by saddle points

on the potential energy landscape. The method is not ex-

pected to work for systems with entropic bottlenecks or ubiq-

uitous low barriers.

D. First-principles dynamics

Calculating the dynamics of a system from first prin-

ciples or DFT is very challenging because of the high com-

putational cost of calculating the force and energy. One way

forward is to use DFT to calculate reaction rates and use

these in a KMC simulation; there are many examples of this

in the catalysis and surface dynamics literature.18–21 Al-

though these DFT calculations typically improve the accu-

racy of reaction rates as compared to those found with em-

pirical potentials, this approach still suffers from all the

limitations of KMC: only a small number of short-range re-

action events can be modeled by mapping them onto a grid.

In this work, we describe several improvements to the

aKMC method to produce a method that is efficient enough

to use directly with DFT. Specifically, we introduce a confi-

dence parameter that determines the accuracy of the simula-

tion, reaction rates are recycled from state to state, and new

saddle point searches are done only in local regions where

events occur. The combination of these improvements results

in a method that scales well with system size and is efficient

enough to model long time surface dynamics of metals on

oxides from first principles.

II. METHODOLOGY

In this section, we briefly describe aKMC,11 highlighting

the changes that improve the accuracy and efficiency of the

method.

A. Saddle point searches

An aKMC simulation starts from an initial minimum

configuration. From this state and all distinct states visited in

the dynamics, saddle point searches are used to find the pro-

cesses available to the system. We have chosen to use the

“dimer” min-mode following method15 for these searches.

Several improvements have been made to the dimer method

since it was originally developed. These include the use of a

forward-instead of a central-difference approximation,22,23 a

rotational force criterion to avoid unnecessarily accurate con-

vergence of the lowest mode,22,23 a large finite-difference

rotation to improve stability with noisy ab initio forces,23

the limited memory Broyden–Fletcher–Goldfarb–Shanno

optimizer,24 and internal coordinates for improved

convergence.25 With these advances, saddle points can be

found from a local minimum in a few hundreds of force

evaluations—not significantly more than a minimization.

Dimer searches are initiated near a local minimum by

displacing the system away from the minimum. The dis-

placement algorithm and magnitude are important for con-

trolling the efficiency of the searches and the variety of

saddles found. Figure 1 illustrates three different approaches

used. The first �i� is very general; all nonfrozen atoms are
displaced by a normally distributed random amount. An at-

tractive feature of this algorithm is that there is some non-

zero probability for all atoms to move to any other position

in space and, in particular, to the neighborhood of any nearby

saddle point. Using this general approach, the problem of

(i) global (ii) local (iii) targeted

FIG. 1. �Color� Displacement algorithms used to initiate saddle point
searches: �i� Displace all atoms, �ii� displace atoms around a central �green�
atom, and �iii� displace atoms around a targeted central atom, in this case an
undercoordinated surface atom. �Blue circles represent atoms in a box from
a side view.�
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finding all saddle points reduces to a problem of sampling

them. Of course, such an argument does not guarantee that

all relevant saddles will be found efficiently, but it does ad-

dress the concern that some important saddle could be en-

tirely missed by the dimer searches. By viewing this as a

sampling problem, we will take the usual approach of mak-

ing sure that our sampled values �in this case, the event cata-
log� do not change with more searches.

If the modeler has some knowledge about the important

kinetic events, this information can be used to focus the

saddle point searches for higher efficiency. One such prop-

erty of low energy reaction mechanisms in solid materials is

that they involve a limited number of atoms in a local region

of space. These events can be targeted by choosing a central

atom in the system and displacing atoms in the local sur-

rounding region to initiate a dimer search, as shown in Fig.

1�ii�. Such local initial displacements do not constrain the
events to the local region. For example, in aKMC simula-

tions of diffusion on Al�100�, displacements of single atoms
still result in long-range cooperative diffusion events involv-

ing many atoms.12

One final displacement algorithm, illustrated in Fig.

1�iii�, requires a selective choice of the locally displaced re-
gion. For surface diffusion and chemical reactions at sur-

faces, the undercoordinated surface atoms and any adsor-

bates on the surface are most likely to react. Focusing on

these atoms improves the efficiency of the method. This ap-

proach should be used with care, however, to avoid user bias;

combining targeted local searches with unbiased locally and

globally initiated searches is a good strategy.

A second consideration is the magnitude of the initial

displacement. Small displacements result in a narrow distri-

bution of saddles near the initial minimum. Large displace-

ments result in a wider variety of saddles, but also some

searches that climb to prohibitively high energy and others

that converge upon saddles that do not lead from the initial

minimum. To check for this, minimizations are followed

along both unstable directions from each saddle found, and if

neither reaches the initial minimum, the saddle is disre-

garded. Ideally, the magnitude of the initial displacements

should be chosen so as to optimize the variety of saddles

found that lead from the initial minimum to a neighboring

state.

B. How many saddle searches are enough?

For an accurate KMC simulation, all events with low

energy saddle points and high rates must be included in the

rate table. For aKMC, where these events are found with

saddle point searches, we present a dynamic stopping crite-

rion to decide when enough searches have completed. This

criterion is based on the history of previous searches to

evaluate the probability that an important saddle has been

missed. There are two benefits from this: �i� such a criterion
provides a level of confidence to the accuracy of the simula-

tion, and �ii� states with only a small number of processes
require only a small number of searches, whereas states with

many new processes require more to satisfy the criterion.

This criterion provides control over the cost and accuracy of

the simulation.

The total number of saddles increases exponentially with

the size of the system. Fortunately, most of these events have

high barriers and are not important for constructing an accu-

rate KMC event table. The window of relevant kinetic events

has barriers within m kBT of the lowest barrier processes, for
a suitably large m. This is illustrated in Fig. 2. Taking m
=20 means that an event at the top of the window will be

e−20 as likely to occur as the lower barrier event, assuming
that the two have similar prefactors. Since e−20�10−9 is
small, the window of relevant saddles is still appropriate for

events with prefactors that vary by several orders of magni-

tude. For systems with extremely different prefactors, a win-

dow of rates can be used instead.

To quantify a confidence level that all relevant saddles

have been found, we start with a heuristic that all relevant

saddle points are found with equal probability as we search

for them. This is an ideal case that will allow for the deriva-

tion of a simple analytic convergence criterion—one that will

be made more realistic in the next section. The confidence

that a relevant saddle has not been missed for a state can then

be written in terms of the following quantities: Np, the num-

ber of relevant processes from the current state; Ns, the num-

ber of successful saddle searches finding a relevant �but pos-
sibly redundant� process; and Nf, the number of unique

processes found. For each search, the probability of finding a

new unique process is

Pf =
Np − Nf

Np
=

dNf

dNs
. �2�

By taking a derivative, we are assuming that the discrete

variables are large enough to be approximated as continuous

variables. Integrating this differential equation gives the

number of unique processes found after Ns searches,

Nf = Np�1 − e−Ns/Np� . �3�

The probability that a relevant saddle will not be missed for

a state is the fraction of unique saddles found. This is our

ideal confidence parameter �ideal in the sense that we have
based this on the ideal case of all saddles being found with

equal probability�,

C =
Nf

Np
= �1 − e−Ns/Np� . �4�

En
er
gy

local minimum
minimum barrier

minimum barrier + m kBT

relevant saddles

unimportant saddles

FIG. 2. �Color online� Reaction mechanisms with barriers within m kBT of
the lowest saddle point energy are considered relevant. For a choice of m
=20, the chance of a higher barrier process occurring in the dynamics is
approximately e−20.
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A problem with this formula is that the total number of

relevant saddles, Np, must be known. For each new state

visited Np is unknown, but it can be determined from the

saddle point searches. To do this, we introduce another quan-

tity, Nr, the number of sequential searches that find relevant

but redundant �nonunique� processes. For each of these
searches, the probability of finding a new and unique saddle

is Pf from Eq. �2�. After Nr searches, one new and unique

saddle is found, so that NrPf=1 and therefore

1

Nr
= Pf = e−Ns/Np, �5�

assuming that Pf is constant for the Nr searches. The confi-

dence that a saddle will not be missed in the event table can

then be related to Nr by

C = �1 − 1
Nr
	 , �6�

which is the main result of this section. It means that one can

choose a confidence that an important saddle will not be

missed in each KMC step. For example, a choice of C
=95% is set by running saddle point searches until Nr=20

searches complete without finding a new, unique �and rel-
evant� saddle point. Fewer total searches will be required for
states with fewer relevant saddles than for states with many.

C. Confidence when saddles are hard to find

The heuristic that all saddles are found with equal prob-

ability describes the best-case scenario. The statistics of min-

mode following calculations show that there is a significant

variation in the probability in which saddles are found,15 and

this variability alters the confidence that an important saddle

is not missed. To quantify the confidence when some saddles

are hard to find, we use a parameter, �, which is the relative
probability of finding the saddle that is least likely to be

found as compared to the ideal case of the previous section,

1 /Np. That is, the minimum probability of finding any one

saddle is

Pmin =
�

Np
, �7�

where 0���1. For �=1, we recover the ideal case of equal
probabilities. In general there will be some nonuniform prob-

ability distribution of finding saddles with a minimum value

Pmin. To derive a confidence parameter, we will take the
worst-case scenario: that all saddles are found with this mini-

mum probability, except one. For ��1, at least one saddle
must have a probability greater than the average, 1 /Np, since

the probability of finding any of the Np saddles is unity. The

worst case is for one saddle to be found with the high prob-

ability,

Pmax = 1 − ��Np − 1

Np
	 . �8�

The confidence parameter describes the probability of miss-

ing a saddle, so for Np�1 we can ignore this process since it
will be found with a much higher probability than the others,

Pmax
Pmin



Np

�
. �9�

Again, for large Np where Np
Np−1, the statistics of find-

ing Np−1 saddles with probability Pmin is the same as the
equal-probability case discussed in the previous section, ex-

cept that the probability of finding each saddle is reduced by

the factor �. Following the same derivation, Eq. �2� becomes

Pf = ��Np − Nf

Np
	 = dNf

dNs
; �10�

the number of unique saddles found, Nf, in terms of the

number of searches, Ns, is

Nf = Np�1 − e−�Ns/Np�; �11�

and the confidence of not missing a saddle is

C =
Nf

Np
= �1 − e−�Ns/Np� . �12�

Using the number of redundant saddles, Nr, from the crite-

rion NrPf=1 yields

1

Nr
= Pf = ��1 − Nf

Np
	 = �e−�Ns/Np, �13�

and substituting into Eq. �12� gives a confidence,

C = �1 − 1

�Nr
	 . �14�

Taking �=1, which is the equal-probability case of the pre-
vious section, this confidence reduces to Eq. �6�.

D. Testing the confidence parameter

To check the validity of this confidence parameter, we

simulated the diffusion and ripening of Al adatoms on the

surface of Al�100� with an embedded atom method

potential.26 The simulation started with nine randomly de-

posited atoms on the surface, as shown in Fig. 3�a� and

Number of redundant searches, Nr

Fr
ac
tio
n
of
to
ta
lr
at
e

0 600 800200 400 1000

0.96

1.00

0.92

0.84

0.88

0.80

1-1/Nr

Al/Al(100)

Fraction
oftotalsaddles

(a) (b)

1-1/(0.25 Nr)

FIG. 3. �Color� Test of the aKMC confidence parameter for a 0.32 s dynam-
ics simulation of �a� nine Al adatoms, which ripen into �b� a compact island
on Al�100� at 135 K. The fraction of the total rate �red, left� and the relevant
saddles found �green, right� follow the analytic confidence relations of Eq.
�6� �blue, upper curve� and Eq. �14� with �=0.25 �green, lower curve�.
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ended after 0.3 s when a compact square island formed on

the surface in the configuration shown in Fig. 3�b�. Note that
Al adatoms diffuse via an exchange mechanism on this

surface27 so that the adatoms in the initial configuration are

not the same as those in the final state; the light red atoms in

the substrate of Fig. 3�b� show the final location of the origi-
nal adatoms.

These dynamics involved 47 310 transitions between 62

unique states. In this calculation, Nr=1000 redundant

searches were used as a stopping criterion for each state. For

an ideal value of �=1, this corresponds to a confidence pa-
rameter of C=99.9% from Eq. �6�. The actual measured
probability of missing an important saddle �the confidence�
was then tested by recalculating the set of relevant saddles at

each state using different values of Nr. Two measures of

accuracy were tested; the number of relevant saddles found

and the cumulative rate of these processes as compared to the

Nr=1000 calculation. Figure 3 shows how these two frac-

tions approach unity as the number of redundant searches is

increased. The fraction of the total rate follows the ideal �
=1 confidence from Eq. �6�. The fraction of the number of
saddles increases more slowly, following Eq. �14� with �
=0.25. The reason for this is that the dimer method finds low

energy saddles with greater frequency than high energy

saddles,15 here by a factor of 4. The high energy saddles,

however, are exponentially less important than the low en-

ergy saddles, so that the cumulative rate is a much better

measure of convergence than the number of saddles. Al-

though the ideal �=1 case is a good approximation for this
system, convergence tests should be run to estimate a con-

servative value for �, so that the confidence can be estab-
lished for a choice of Nr using Eq. �14�.

E. Recycling saddle points

We now have a way of finding all important saddle

points leading away from a state to a specified confidence

level. These reaction mechanisms and rates are used to build

a KMC rate table so that an event can be selected with the

appropriate probability and the system advanced to the final

state of that chosen process. At this new state, a new event

table is required. Instead of starting from scratch, the infor-

mation of processes from the previous state �as well as other
states and calculations� can be used to efficiently build the
new event table. We describe this process as recycling saddle

points.

Recycling saddle points from previous states is most im-

portant for systems with local processes in which a subset of

atoms moves significantly and the structure of the rest of the

system remains largely unchanged. Figure 4 is a cartoon of

such a system with atoms moving on a surface. Seven hop-

ping processes are illustrated and used to construct a rate

table. Process 7 is selected in the KMC step. For the next

KMC step, a new event table is required. Processes 1–5 are

largely unaffected by the chosen process and can be recycled

�updated� from the old to the new event table at minimal

cost. Any events in the old table that were close to the chosen

process �process 6� will be affected, leaving a hole in the
event table. This hole will extend only as far as the range of

the local processes, so that the work of filling it in the new

table does not require new saddle searches across the entire

system. For large systems, the number of searches required

at each KMC step does not increase with system size. The

efficiency improvements and favorable scaling with system

size due to process recycling are demonstrated later.

First, we need to describe how processes are recycled

from state to state. The ith process is defined by the coordi-

nates of the initial state, R� i
init, saddle point, R� i

sp, and final

state, R� i
final. The normal mode at the saddle, N̂i

sp, is also

known. Let an additional subscript j denote a particular

atom, so that R� i,j
init is the coordinates of the jth atom of the

initial minimum in the ith process. A KMC step is made by
selecting one process, which we will denote with subscript

i=0. The recycling of all other processes is then attempted

by merging their saddle point configuration, R� i
sp, with the

final state of the chosen process, R� 0
final, which is the initial

state of the next KMC step. This is done with a single dis-

tance parameter, dR, which is taken to be 0.2 Å in all of our
calculations presented here. Atoms that move by more than

dR in the chosen process are set in the final configuration of
the chosen process. Atoms that move by less are placed in

the configuration of the saddle of the recycled process. The

coordinates of the recycled saddle, R� i,j
sprecyc, are taken to be

R� i,j
sprecyc =�R� i,j

sp if �R� 0,j
final − R� 0,j

init� � dR

R� 0,j
final if �R� 0,j

final − R� 0,j
init� � dR ,


 �15�

and the negative mode is taken along the vector

N� i,j
sprecyc =�N̂i,j

sp if �R� 0,j
final − R� 0,j

init� � dR

0 if �R� 0,j
final − R� 0,j

init� � dR .

 �16�

From this approximate saddle point configuration and nega-

tive mode, a saddle point search is used to converge to a

�hopefully� nearby saddle. If the recycled process is distant
from the chosen process, the search converges very quickly.

To the extent that the recycled and chosen processes overlap,

the initial configuration can be unphysical and the search will

fail. This indicates that the recycled process falls into the

hole in the event table where fresh searches are required.

Figure 5 illustrates how three processes �b�–�d� are re-
cycled given the chosen process �a� for a step in the aKMC
dynamics of Al ripening on Al�100�. The recycling of the
other processes is done by taking their saddle point configu-

ration and setting the position of any atoms that moved sig-

localized events

1 2

3

45

6 7

old rate table

7

2

6

3
4
5

new rate table

1

recycle
saddles

new
saddles

hole 2

6

3
4
5

1

7
8

hole

FIG. 4. �Color online� For systems with local events, the mechanism and
rates of distant events can be recycled to build a new rate table very quickly.
New searches are concentrated in the region around the chosen process, for
which there is a hole in the rate table. Then, the cost of updating the rate
table does not increase with system size.
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nificantly in the chosen process �green, marked with a dot� to
their position in the final state of the chosen process. For a

distant process �b� the recycled saddle is a good initial guess
and converges to a true saddle with minimal cost. Process �c�
is in close proximity to �a�, but the recycling rules result in a
fair initial guess of a saddle that converges to a long-range

exchange event in the new state. Processes �d� and �a� are too
close so that the recycled initial saddle geometry is high in

energy. Processes this close to �a� need to be found with new
saddle searches.

Large systems with local processes benefit a lot from this

recycling approach. Figure 6 shows how the computational

cost, evaluated in terms of the number of force evaluations,

is reduced when saddles are recycled. A single evaluation of

the force is for all atom in the system. In this test, a two-step

simulation of Al diffusion on Al�100� is done for a range of
confidence parameters, C=1−1 / ��Nr�, taking �=1. The ini-
tial configuration is shown in Fig. 3�a�. The cost is measured
only for the second KMC step. With saddle recycling, all the

processes found in the first step are used to help build the

rate table for the second step. Without recycling, the rate

table is built from scratch. There is a significant improve-

ment in efficiency when recycling is used even for this mod-

est system size. The biggest gain is for confidence values of

90%–99% �Nr=10–100�. At higher accuracy, the cost of
both calculations is dominated by finding Nr redundant

saddles after the event table is found, which explains the

parallel linear trend at high values of Nr.

This same model system was used to test how saddle

recycling changes the scaling of the aKMC computational

cost with system size. Figure 7 shows three Al substrates

with 309, 618, and 1236 atoms, formed by making copies of

the smallest system. The Al /Al�100� test was used to com-
pare the cost of building a rate table with and without recy-

cling, using a stopping criterion of Nr=60 �a confidence C
=98% with �=1�. For the smallest system, recycling halves
the number of required force evaluations. For larger systems,

there is a greater fraction of saddles that can be recycled, so

the benefit of recycling is even higher. If the range of the

processes is smaller than the system size, the cost of updat-

ing the rate table does not increase with system size. This

excellent scaling is the most important reason to use process

recycling in aKMC simulations.

A couple of comments should be made about this scaling

result. First, unless the force evaluation can be localized, the

cost of each force evaluation will increase with system size

so that the actual computational effort will also increase.

Second, if one system is compared to another system that is

exactly twice as big and has twice the number of available

processes, the amount of time simulated in each KMC step

will be cut in half, so that twice as many KMC steps are

needed to reach the same simulation time as that in the small

system. The recycling of processes improves the scaling of

the cost to build the KMC event table; the scaling of the

KMC dynamics for systems with localized processes can

also be made efficient but in different ways.28,29

F. States connected by low barriers

KMC is efficient when there is a clear separation of time

scales between vibrational motion and the state-to-state dy-

namics. Fast rates between states reduce the efficiency of

KMC. For dynamics at surfaces, it is not unusual to encoun-

initial saddle final
selected
process

recycled
saddle

configuration(a)

(b)

(c)

(d)

FIG. 5. �Color� Examples of recycling saddle points from a previous state
for Al diffusion on Al�100�. To recycle a saddle, atoms that move signifi-
cantly in the chosen process �a� are identified. Here, the one atom that
moved by more than dR=0.2 Å is marked with a ���. Then, in the saddle
geometry of all other processes ��b�, �c�, and �d��, these moving atoms are
set in their final-state positions of the chosen process.
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FIG. 6. �Color online� The computational cost for a KMC step is signifi-
cantly reduced by recycling saddles from the previous step.
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FIG. 7. �Color online� For a system with local processes, recycling saddles
from one state to the next results in a computational effort �measured by the
number of force evaluations� that does not increase with system size. The
insets show how the smallest Al /Al�100� system was expanded to make
larger systems for this calculation.
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ter fast diffusion processes on the time scale of pico- or

nanoseconds in a simulation for which there are also impor-

tant events on the micro- or millisecond time scale. Even

though each KMC step requires a small computational effort,

it can be prohibitively expensive to simulate millions or bil-

lions of fast events. In the Al /Al�100� surface ripening simu-
lations, for example, fast processes such as trimer rotation

and edge running are encountered frequently and are costly

to model explicitly at low temperatures.

In our simulations we avoid the explicit modeling of fast

oscillation between pairs of neighboring states. Figure 8 il-

lustrates two such states, a and b, separated by a lower bar-
rier than those required to leave the two states. If the motion

between a and b is rapid, equilibrium will be quickly reached
so that the two states can be considered a single superbasin.

A superbasin is detected in the following way. When a new

state is reached, the rate of each event is compared to the

total rate to leave the state, and a flag is set if the ratio is

greater than a certain value. In our simulations, we set this

ratio to 99.999%, indicating that the fastest event will be

chosen with this high probability. If the fastest event is cho-

sen in the KMC step, the same comparison is made in the

new state. If each state has one dominant process leading to

the other, they are marked as belonging to a superbasin. A

new combined rate table is then constructed from all pro-

cesses leading out of the superbasin. All barriers are taken

with respect to the lower energy state, �E1 and �E2 in Fig. 8.
If states a and b are visited in the subsequent dynamics, the
combined rate table is used to make a KMC step from that

superbasin. This approach can be extended to superbasins

with more than two states. Reference 30 and the references

therein have an in-depth discussion of this approach.

III. FIRST-PRINCIPLES AKMC DYNAMICS

DFT calculations are much more expensive than the em-

pirical potential calculations described so far. With current

computers, it is just becoming possible to combine DFT with

aKMC to model rare-event dynamics. Both the efficiency

improvements described and the fact that saddle searches are

independent and can be calculated in parallel make the simu-

lations possible. With many computers, even loosely coupled

ones, the time required for each KMC step reduces to the

time required to evaluate the rate of a single process.

To simplify the process of running many independent

saddle point searches, we have developed a script that can

run aKMC dynamics by automatically sending the calcula-

tions to a cluster of computers, a supercomputer, or distrib-

uted computing resources.31 This script implements the

methods described here using forces from the Vienna Ab-
initio Software Package �VASP� DFT code.32 A schematic of
how the script works is illustrated in Fig. 9. The script keeps

track of the aKMC dynamics calculation and, as needed, sub-

mits DFT jobs to the available computers via a queuing sys-

tem. Automating this process is essential given the large

number of calculations required for a dynamics simulation.

A. Pd cluster formation on MgO„100…
To demonstrate how the aKMC method can be used with

DFT to calculate dynamics over long time scales, we have

modeled the formation of a Pd cluster on the MgO�100�
surface starting from four separated Pd adatoms. Not only is

this a model system for heterogeneous catalysis,33 but there

is also some recent interest in a better understanding of these

ripening dynamics.21,34–37 It has been shown that Pd clusters

form at defect sites, so we have put one Pd monomer initially

at a F+ center oxygen vacancy site, where it is bound irre-

versibly at a simulation temperature of 300 K. From this

initial configuration, the aKMC method is used to calculate a

state-to-state dynamical trajectory. For this simulation, we

used process recycling with dR=0.2 Å and Nr=10 sequential

redundant saddle searches in each state �a confidence of C
=90% for �=1�. Superbasin detection was used, but no such
states were found in this simulation.

The MgO substrate was modeled by a two-layer slab

with 36 atoms in each layer, with the atoms in the bottom

layer held frozen at the bulk lattice positions. Convergence

tests of Pd binding show that the two-layer model is suffi-

cient since the MgO substrate is so rigid. The Perdew–Wang

91 generalized gradient functional38 was used to model elec-

tronic exchange and correlation. Pseudopotentials of the

Vanderbilt form39 constructed within the projected aug-

mented wave framework were used,40 as implemented in

VASP. A plane wave basis set with an energy cutoff of 251 eV

and a 	-point sampling of the Brillouin zone were found to
be sufficient. Geometries were considered converged when

the force dropped below 0.003 eV /Å on each atom. The

rates of reaction were calculated with Eq. �1� using a stan-
dard prefactor of 1012 s−1.

The Pd cluster formation dynamics, shown in Fig. 10,

consists of ten aKMC steps between nine unique states �the
state reached at 11 
s is repeated�. On a time scale of mi-
croseconds, Pd hopping between O sites is activated, and a

two-dimensional cluster forms. For these states, processes

super-basin

ΔE1 ΔE2

a b

FIG. 8. �Color online� A superbasin is composed of states �a and b� that are
connected by much lower barriers than the barriers to leave the superbasin
��E1 ,�E2�. To avoid a large number of oscillations between states in the
superbasin, they are taken to be a single state in local equilibrium.

saddle search
saddle search

minimization

dynamical matrix

...

Server
Nodes:

akmc.pl script
Jobs

Results (saddle points,
minima, normal modes)

FIG. 9. �Color online� An aKMC script automatically submits calculations
on a cluster of computers, restarts incomplete jobs, finds saddles and corre-
sponding final states, collects kinetic processes and rate, and performs the
KMC steps.
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recycling offered a significant speedup because of the many

equivalent hopping events available to each Pd monomer. At

62 
s an interesting low-energy concerted exchange takes
place, resulting in a Pd atom being pushed up on top of other

three to form a three-dimensional tetrahedron. In the follow-

ing steps, the tetramer evolves through a few different con-

formations, reaching a time scale of milliseconds. Here, the

tetramer is pinned at a defect, but in another work looking at

Pd cluster diffusion on the MgO terrace, it was shown that

this tetramer is the fastest diffusing species on the terrace and

that it diffuses via a rolling mechanism.35 The rapid forma-

tion and diffusion of three-dimensional clusters has been

shown to be important for kinetic modeling of Pd growth on

MgO�100�.21

B. Ca oxidation at a MgO step

As a second test, we investigated the dynamics of Ca

oxidation on MgO�100�. Previous experimental studies have
shown that Ca atoms bind to MgO�100�, giving off an initial
heat of adsorption of 4.2 eV, and that roughly 7% of the

surface is covered with defects that �on average� bind Ca this
strongly.41 This is higher than the calculated binding of Ca to

steps �2.3 eV� and kinks �3.9 eV�.42 The calculated kink-site
binding is fairly close to the experimental binding, but a

grown MgO crystal is unlikely to have 7% kink defects. The

aKMC simulation, illustrated in Figs. 11 and 12, investigates

a possible explanation for the high measured heat of adsorp-

tion. The MgO surface is made by oxidizing Mg in the pres-

ence of O2 at high temperatures. If some of the O2 remained

on the surface after annealing, it could combine with depos-

ited Ca, releasing the high energy of Ca oxidation. This was

investigated with a DFT-aKMC dynamics simulation of a Ca

atom next to an adsorbed O2 molecule at a MgO�100� step
edge. The details of the DFT calculations are similar to those

described in the previous section and are discussed more

fully in Ref. 42. The same value of dR=0.2 Å was used for
process recycling and Nr=10 for the confidence level.

Figure 11 shows the wide range of kinetic events found

by dimer min-mode following searches from this initial state.

The fastest processes involve simple O2 libration ��a� and
�b��. Processes with higher barriers involve complex O2 mo-
tion, replacing O atoms from the surface ��c� and �o��, or
dissociation and recombination with surface-bound O ��g�,
�i�, �k�, �l�, and �m��. In the dynamics, shown in Fig. 12, O2
is found to first librate and reach equilibrium between two

low energy states at 1.5 ps. Since the libration rate is so

much higher than any other event, these two states were

considered a single superbasin, avoiding the explicit model-

ing of about 50 million trivial KMC steps. After 10 ms, the

O2 pushes out a surface O atom to form a peroxy species.

The peroxy species then rapidly oscillates between two

stable conformers before dissociating into lattice sites to

form a small O–Ca–O step. If O2 or step-bound peroxy spe-

cies were present on the annealed MgO�100� surface, the
oxidation of deposited Ca atoms could contribute to the high

experimental heat of adsorption as compared to DFT.

IV. CONCLUSIONS

Two improvements have been made to the aKMC meth-

odology for simulating dynamics over long time scales: �i� a

t=0 378 ns 2 μs 11 μs

11 μs 24 μs 24 μs 62 μs

62 μs 62 μs 9 ms

FIG. 10. �Color� The DFT-based aKMC simulation of a Pd tetramer forma-
tion at an O vacancy site ��� on the MgO�100� surface over a time scale of
9 ms at 300 K. �Circles: O �red�, Mg �green�, and Pd �purple��.

initial state

final states

barrier (eV) 0.30 0.75 0.94

2.07

1.06 1.14 1.711.31 1.61

2.13 2.29

2.39

2.382.38

2.39 2.63 2.93 4.96

(a) (b) (c)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

(j) (k) (m) (n) (o)

FIG. 11. �Color� Reaction mechanisms from an initial state with O2 ad-
sorbed next to a Ca atom at a step on the MgO�100� surface, found using
DFT forces with dimer searches. �Red atoms are O from MgO, pink are O
from O2, green are Mg, gray are Ca, and the dashed line is the step edge.
The pink dot is used to distinguish the O2 atoms.�

t = 0 s 1.0 ps 1.5 ps 10 ms

10 ms 10 ms 10.1 ms

FIG. 12. �Color� DFT dynamics of Ca oxidation on the MgO�100� surface at
500 K.
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confidence parameter has been introduced, which provides a

dynamic criterion for deciding when to stop searching for

saddles from each new state, and �ii� the recycling of saddles
from state to state improves the efficiency and scaling of the

method for systems with local processes. Also, our imple-

mentation of the method can make use of large parallel and

distributed computing resources so that it is possible to cal-

culate state-to-state, rare-event chemical dynamics at sur-

faces using forces and energies from DFT without having to

anticipate the important reaction mechanisms.
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