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ABSTRACT: Even as a commercial cathode material, LiFePO4 remains
of tremendous research interest for understanding Li intercalation
dynamics. The partially lithiated material spontaneously separates into
Li-poor and Li-rich phases at equilibrium. Phase segregation is a
surprising property of LiFePO4 given its high measured rate capability.
Previous theoretical studies, aiming to describe Li intercalation in
LiFePO4, include both atomic-scale density functional theory (DFT)
calculations of static Li distributions and entire-particle-scale phase field
models, based upon empirical parameters, studying the dynamics of the
phase separation. Little effort has been made to bridge the gap between
these two scales. In this work, DFT calculations are used to fit a cluster
expansion for the basis of kinetic Monte Carlo calculations, which enables
long time scale simulations with accurate atomic interactions. This atomistic model shows how the phases evolve in
LixFePO4 without parameters from experiments. Our simulations reveal that an ordered Li0.5FePO4 phase with
alternating Li-rich and Li-poor planes along the ac direction forms between the LiFePO4 and FePO4 phases, which is
consistent with recent X-ray diffraction experiments showing peaks associated with an intermediate-Li phase. The
calculations also help to explain a recent puzzling experiment showing that LiFePO4 particles with high aspect ratios that
are narrower along the [100] direction, perpendicular to the [010] Li diffusion channels, actually have better rate
capabilities. Our calculations show that lateral surfaces parallel to the Li diffusion channels, as well as other preexisting
sites that bind Li weakly, are important for phase nucleation and rapid cycling performance.
KEYWORDS: LiFePO4, DFT, KMC, cluster expansion, intercalation

LiFePO4 is one of the most widely used and studied
cathode materials for Li-ion batteries since it was first
synthesized in Goodenough’s group in 1997.1−17 The

material exhibits high stability, is nontoxic, and is inexpensive.
Surprisingly, the rate capability of LiFePO4 is also acceptable
and in fact beyond expectations for two reasons. First, LiFePO4
is an insulator, which would typically exclude it from the family
of high-rate cathode materials. It is generally thought that a
high-rate cathode should be an electronic conductor to
facilitate transport of both Li+ ions and electrons. However,
it is possible for the Li+ and e− species to combine at the
cathode surface and intercalate together as a Li atom or more
specifically as a Li+ ion and an e− polaron. As long as a Li+ ion
can easily find an electron, independent of where the electron
is from, electronic conductivity in the bulk cathode should not
be a rate-limiting factor. One solution, carbon coating, which
increases the surface electronic conductivity, was developed
first with LiFePO4 and is now applied to many cathode
materials. Second, LixFePO4 undergoes a Li-rich (LFP) and Li-
poor (FP) phase separation at equilibrium. A widely accepted
concept is that materials that phase separate should have low
ionic diffusivity as compared to materials that accommodate a
Li solid solution. Some reports, therefore, have argued that

LixFePO4 actually follows an out-of-equilibrium solid solution
pathway during rapid charge and discharge. A mechanistic
understanding, however, is still lacking to explain why LiFePO4
has such a solid solution pathway while other materials do not.
Such an understanding can be important for both LiFePO4 and
other Li intercalation materials that phase segregate.
Recently, advanced experimental techniques have provided

new insights into the intermediate phases and kinetics of
LiFePO4 during charge/discharge, although discrepancies still
exist due to the sensitivity for small particle sizes and other
complicating experimental conditions. In situ (synchrotron) X-
ray diffraction studies report extra peaks besides those of the
LFP and FP phases. Some attribute these peaks to be a
confirmation of a solid solution path, while others believe that
they indicate an ordered phase between LFP and FP.12,13,17

Additionally, an ordered LixFePO4 phase might be difficult to
distinguish from a solid solution by diffraction due to
similarities in the lattice parameters of the two end phases,
as well as inevitable peak broadening for small particles. A
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clearly ordered phase near the composition of Li0.5FePO4 with
alternatively filled b channels has been observed by aberration-
corrected annular bright-field scanning transmission electron
microscopy.18,19 Based on density functional theory (DFT)
calculations, Abdellahi et al. have reported a detailed analysis of
the chemical interfacial energies combined with the elastic
energies to understand the possible Li arrangements that can
be observed.20 They have found that an ac interface with a
diffuse solid solution region between the LFP and FP phases
was of the lowest total energy, which is argued to be present at
low to moderate charge/discharge rates.
With respect to the kinetics, Li et al. have compared the rate

capabilities of LiFePO4 particles of different shapes with
various exposed facet ratios.21 In their experiments, particles
with high aspect ratios that are narrower along the [100]
direction, perpendicular to the [010] diffusion direction, can
achieve higher rate capabilities. Previous calculations and
experiments have confirmed that Li can easily diffuse along the
[010] channels, while across the channels the barrier is
prohibitively high. Fe−Li anti-site defects may allow cross-
channel diffusion, but the anti-site defect concentration is
measured to be low in experiments.3,9 Thus, the high rate of
the high aspect ratio particles cannot be explained by a shorter
diffusion length; no atomistic mechanism has been proposed
to account for this observation.
In this work, we have performed kinetic Monte Carlo

(KMC) simulations based on DFT energetics to study the
kinetics of phase evolution in LiFePO4 during charge and
discharge. A cluster expansion is employed to rigorously extract
the effective Li−Li interactions from hundreds of DFT
calculations. Direct molecular dynamics simulations, and
especially ab initio molecular dynamics (AIMD), are expensive
and thus have limited simulation size and time. Phase field
modeling can reach larger length scales and longer time scales,
but it is unable to capture details at the atomic scale.22−24 The
approach used here extends the simulation time scale by orders
of magnitude from AIMD without compromising the
simulation accuracy. Our cluster expansion shows that Li−Li
interactions are attractive across the [010] channels and
repulsive in the same channel. KMC reveals that an ordered
Li0.5FePO4 phase with alternating filled and empty planes along
the ac direction forms between the LFP and FP phases, which
agrees with Abdellahi’s analysis. The Li0.5FePO4 phase forms
diagonal interfaces, not parallel to any primary axis, in both
LFP and FP, qualitatively agreeing with observations by
synchrotron X-ray diffraction (XRD) and transmission electron
microscopy (TEM).25,26 Moreover, under constant voltage,
particles with shorter widths along the a axis exhibit faster
charge/discharge rates. The higher rate capability is due to the
fact that new phases can nucleate at the (100) surface owing to
missing Li−Li attractive interactions between channels at the
surface. The same effect can be used to explain the defect and
amorphous phase enhanced rate capability in LiFePO4.

5,6,16 In
all these experiments low voltage tails present in the voltage
profiles indicate that some Li are weakly bound to the host
structure. These weakly bound Li sites are emptied first during
charge and filled last during discharge, which again reduces the
Li−Li attraction between channels and facilitates nucleation.

RESULTS
Li−Li Interactions. The average voltage of LiFePO4 is

calculated to be 3.56 V with respect to Li metal, in agreement
with experiments and other calculations. FePO4 and LiFePO4

are the only two points on the convex hull of LixFePO4, but
several partially lithiated structures with Li concentrations of
0.333, 0.5, 0.667, and 0.875 lie within 2 meV/f.u. (formula
unit) above the hull, which have fully filled ac layers well mixed
with empty layers. These structures retain a strong Li−Li
attraction in the ac plane. The half-lithiated structure with
every other bc plane filled has the highest energy because the
Li−Li attractions along the a axis are disturbed. The above
observations qualitatively agree with previous computational
studies.20,27 A comprehensive picture of Li−Li interactions can
be gained from the largest terms in the cluster expansion.
Ten clusters are selected by minimizing the cross validation

score, all of which are pairs. The geometric information and
corresponding effective cluster interactions (ECIs), J, are listed
in Table 1. The dominant six pairs are illustrated in Figure 1.

The ECI values are based on the lattice gas interpretation
where the basis is chosen as (0, 1), which means that only two
sites both being occupied by Li contribute to the total energy.
In this way, the ECIs directly represent interaction energies of
Li−Li pairs. Based on Table 1, a Li ion attracts Li from the
neighboring channels and repels Li within the same channel.
The attraction stems from Li+ sharing electrons on the Fe2+

centers that partition the channels, which can be understood as
a favorable dipole−dipole interaction between two (Li+ − e−)
species. The strongest attraction is in the ac plane. Between the
ac planes, the intrachannel repulsion and the diagonal
attraction largely cancel, so that the overall interplane
attraction is weak. It is the effective Li−Li attraction that
leads to the phase separation, as reported in previous
studies.28,29

Table 1. Clusters

no. end point degeneracy J (meV) radius (Å)

1 (−1, 0, −1) 4 −64 5.7
2 (−1, 1, −1) 4 −51 6.5
3 (−1, 1, 1) 4 −30 6.5
4 (−1, 2, −1) 4 −31 8.3
5 (0, 1, 0) 2 140 3.0
6 (0, 2, 0) 2 45 6.0
7 (0, 0, 2) 2 −16 4.7
8 (0, 1, 2) 4 10 5.6
9 (0, 2, 2) 2 27 7.6
10 (0, 2, −2) 2 −22 7.6

Figure 1. Six dominant pairs from our cluster expansion as
numbered in Table 1. The red arrows and numbers indicate
repulsive interactions with atom 0, and the blue ones represent
attractive interactions. Green spheres are Li; red sticks are bonds
connecting to O; brown sticks connect to Fe; purple sticks connect
to P; yellow clouds are electrons donated from Li.
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Charge Kinetics. Based on the above Li−Li interactions,
the charge kinetics of three particles are compared using KMC
simulations. The three have the same diffusion length of 15 nm
(50 Li sites) along the b axis and periodic boundary conditions
in the c direction. The lengths along the a direction, da, are 8
nm, 16 nm, and infinite, modeled with periodic boundaries. No
new ECIs are introduced for surface sites; the only effect of the
(100) surface is eliminating half of the attractive pairs from the
neighboring columns. The charge processes are under a
constant voltage of 3.80 V, 0.24 V higher than the calculated
equilibrium voltage. This relatively high overpotential is
needed to fully charge in the simulations within an accessible
computational time. The challenge comes from the time scale
difference between Li hopping in a single phase region and
near the phase boundary. Li hopping is very fast in the dilute
limit because few Li−Li bonds are formed or broken and the
energy landscape is relatively flat. For a phase boundary parallel
to the ac plane to evolve, however, the strongest Li−Li
attractions in the ac plane, labeled as cluster 1 in Table 1, have
to be broken to nucleate a new layer of Li. Phase boundary
motion is more difficult because it requires the nucleation of a
new layer sufficiently large to be as stable as the previous layer.
In spite of these computational challenges, our simulations are
able to reach millisecond time scales.
Figure 2(a) is a plot of the Li fraction (Li/Fe ratio) as a

function of time during charge for the three particles. Figure
2(a) shows that thiner particles charge significantly faster. In
contrast with the established understanding that fast charging
kinetics must be a result of a short diffusion length, no Li
hopping along the a axis is allowed in our simulations.2,3,9,30

Here the (100) surface facilitates fast kinetics by providing
nucleation sites for ac layer formation due to the fact that the
surface sites are missing half of the possible Li−Li attraction
between the b channels. When the overall Li concentration is
below 0.02, the remaining Li are unlikely to interact, and thus
the delithiation rates (slopes) of the three particles converge.
The preexisting-nucleus effect is clear in the current data

shown in Figure 2(b). The current is proportional to the slope
of Li fraction vs time. When charging starts, the thickest
particle, with infinite da, exhibits a profound nucleation feature
where the current reaches a peak at 50 μs; the two thinner
particles have higher initial currents and no significant
nucleation peak. The above observation qualitatively agrees
with the experimental results in ref 31; as the mean particle size
decreases from 203 nm to 45 nm, the initial current increases
and the current peak corresponding to nucleation disappears.
It is worth noting that there are other possible nucleation sites
besides the (100) surface, including defects or amorphous
regions that weakly bind Li. If connected to the surface by a
percolation path, these weakly bound Li sites will be
depopulated first during charge and serve as nuclei in the
same way as the (100) surface. The observation that many
high-rate LiFePO4 samples possess longer low-voltage tails, as
compared to carefully crystallized materials, suggests a
connection between weakly bound Li sites and fast kinetics
and that facile nucleation is a plausible explanation for their
high rate capabilities.5,6,16

The Kolmogorov−Johnson−Mehl−Avrami (KJMA)
model32−35 is often used to analyze the phase transition
kinetics, where the volume fraction decay of the initial phase
follows

= −f ktexp( )n
(1)

Here f is the volume/mole fraction of the initial phase, t is
time, k is the overall rate constant, and n is the Avrami
exponent. From the original derivation, n is interpreted as the
dimensionality of the phase growth. Experimentally obtained n
values for LiFePO4 are close to 1.0, suggesting a one-
dimensional growth of the phase boundary.4,31,36 Figure 2(c)
shows the log(log(1/f)) versus log(t) plots from our
simulations. The blue and green curves with preexisting nuclei
closely follow a linear line with a slope of 0.83, not far from 1.0.
For larger particles where nucleation rates are nonzero but
decreasing, values of n in a range of 1.05 to 1.2 are also
observed in ref 31, corresponding to the da = ∞ case in our
simulation where n = 1.3. Fortunately, given the qualitative
agreement between our simulations and the experiments, we
do not have to interpret the Avrami exponent to learn about
the phase transformation mechanism; rather we can learn
about the mechanism directly from the configurations at
different states of charge in Figure 3.

Figure 2. (a) Li fraction as a function of time during charge, f(t);
(b) derivative of f(t), which is proportional to the charging
current; (c) Avrami plot where the slope gives the Avrami
exponent; the upper and lower black dashed lines have a slope of
0.83 and 1.3, respectively. da is the particle width along the a axis.
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Intermediate Phases. Li distributions in the da = 16 nm
particle as a function of charge state are shown in Figure 3. The
phase evolution remains close to a two-phase equilibrium
between LFP and FP, but with a relatively wide interface at the
phase boundary. The intermediate phase at the boundary has
an average Li concentration near 0.5. However, it is clearly not

a solid solution, but rather an ordered structure with
alternating Li-rich and Li-poor monatomic layers along the b
axis. Viewing the structure along the b axis, however, as most
TEM experiments have done, could lead to an incorrect
conclusion that this structure is a solid solution. The simulated
XRD pattern of this Li0.5FePO4 phase shows intermediate
peaks between FP and LFP for the (200), (211)/(020), and
(301) planes, in agreement with the nascent peaks observed in
in situ experiments.12,13

To better resolve the phase boundary propagation pattern
along the a direction, supercells with twice the length along the
a and c directions and shorter along the b direction were
simulated. A set of configurations calculated for the delithiation
process are shown in Figure 4. While the horizontal interfaces
perpendicular to the b axis can be clearly seen, there are also
diagonal interfaces in both FP/Li0.5FePO4 and Li0.5FePO4/
LFP. The Li0.5FePO4/LFP interfaces have normals aligned
with the [110] or [−110] directions, forming angles near 60°
relative to the a axis; the FP/Li0.5FePO4 interfaces have a larger
variation, with normals varying from 0° to 60° with respect to
the a axis. These orientations agree with observations from
synchrotron microbeam diffraction by Zhang et al.26

Discharge. The discharge kinetics have different features
from charging, although the surface acceleration contribution
remains the same. The Li fraction vs time curves of the three
particles are shown in Figure 5, under a constant voltage of 3.2
V (an overpotential of 0.36 V). The discharge is initially
extremely fast, when the Li fraction is below 0.2, and slows
down as the Li concentration increases. More interestingly, the
rate at the start of discharge is higher than that at the end of
charge when the Li fraction is below 0.2, because the former
forms a true solid solution where Li and vacancies are
randomly mixed, while the latter has Li aggregated in a partially
filled ac plane. The difference comes from hysteresis and is a
kinetic effect.

Figure 3. Li arrangements during charge for da = 16 nm. The color
map represents Li occupation of the c columns. The particle
simulated has a rod morphology: 16 nm (32 sites) along a, 30 nm
(100 sites) along b, and periodic along c with an 8 nm long unit
cell (32 sites). Only half of the particle along b is explicitly
simulated through the adoption of reflecting boundary conditions.

Figure 4. Characteristic Li configurations as a function of charge state for (a) 32 nm wide particles and (b) infinitely wide slabs.
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DISCUSSION
The elastic energy has a profound effect on the phase
evolution, as discussed in previous work.10,20,27 For compar-
ison, we have run a KMC simulation of the charging process
without adding the elastic energy term. As shown in Figure 6, a

sharper phase boundary forms between the LFP and FP phases
and the Li0.5FePO4 phase shrinks to a limited region. This
change is consistent with Abdellahi’s previous analysis that the
elastic energy causes a diffuse LFP/FP interface.20,27 Moreover,
without the elastic energy the delithiation time becomes an
order of magnitude longer under the same voltage. The elastic
energy slightly penalizes phase separation and smoothes the
energy landscape, resulting in faster charge/discharge kinetics.
We should note that the absolute charge/discharge rate in

our simulation is significantly faster than in experiments.
Possible reasons are that our particle size is smaller than in
typical experiments and also that any processes outside the
cathode material are ignored, including Li+ dissolution into the
electrolyte and Li interaction into the anode.

CONCLUSIONS
A DFT-based KMC model is developed to study the phase
evolution and Li intercalation kinetics in LiFePO4. Atomistic
pictures of the phase changes are obtained under realistic
charge/discharge conditions. A nucleation mechanism ac-
counting for the high-rate LiFePO4 is proposed: preexisting
vacant or weakly bound sites, such as lateral surface and
defects, serve as nucleation centers that facilitate the phase
transition under both charge and discharge. An increase in
concentration of such sites can effectively promote the rate
capability of the LiFePO4 cathode.

METHODS
DFT. DFT calculations were performed with the Vienna Ab Initio

Simulation Package.37,38 The Perdew−Wang-91 (PW91) functional
with the Hubbard U correction was used to account for the

exchange−correlation energy.39−41 An effective U value (Ueff = U − J)
of 4.3 eV was applied to the Fe 3d electrons.42 Valence electrons were
expanded in a plane wave basis set, and core electrons were described
within the projector augmented wave formalism.43−46 Both the atomic
positions and lattice parameters were fully relaxed. A ferromagnetic
spin configuration was enforced since the energetic difference with
respect to an antiferromagnetic state was found to be negligible.42

Cluster Expansion and Elastic Energy. The cluster expansion
for the Li−Li interactions was performed with the Alloy Theoretic
Automated Toolkit (ATAT).47−50 The training data included 241
DFT+U optimized structures and energies. To better reproduce the
convex hull, points were given a weight of 10 if their formation
energies per formula unit were within 2 meV/f.u. above the hull and a
weight of 5 if within 20 meV/f.u. A cross validation scheme was
employed to select the most significant clusters and to avoid
overfitting.49 The elastic energy was subtracted from the total energy
of each structure for the cluster expansion, so that the cluster
expansion need only describe the local energy; the elastic energy was
then added back to the cluster expansion energies. While the explicit
exclusion of the elastic energy to the cluster expansion changed the
cluster interaction terms by only ∼1 meV, it did qualitatively affect the
phase separation behavior.

The elastic energy from the lattice mismatch between the Li-rich
and Li-poor phases is long-range in nature and by an order of
magnitude smaller than local Li−Li interactions, and therefore it is
numerically difficult to be captured by the local cluster expansion.
However, a simple analytic form of the elastic energy is possible. We
estimate the elastic energy per site as

∑= × × − ̅
=

E V C c r c r e c e
1
2

( ( )) ( ( ) )
i

ii ii iielas
1,3

0
2

(2)

where V0 is the average volume per site; Cii(c(r)) are the diagonal
elements of the elastic tensor; eii are the diagonal strain components
between the end phases FePO4 and LiFePO4; c(r) is the local Li
concentration at position r averaged over 4 × 4 × 4 sites; and c ̅ is the
global Li concentration averaged over the whole particle. Cii(c(r)) is
linearly interpolated between the end point compositions. Cii(0) and
Cii(1) are taken from calculations using the same DFT+U method
described above.51 In eq 2 we assume that the particle has an
equilibrium strain of ce̅ii, and any local area that deviates from the
global average concentration is compressed or stretched to
accommodate the shape of the particle. c(r)eii is the intrinsic strain
corresponding to the local concentration c(r), which has no elastic
energy. c(r)eii − ce̅ii is the deformation that the local region undergoes
to conform with the particle. Equation 2 satisfies the solid solution
limit where the elastic energy is zero. In a two-phase region, Eelas
drives the Li distribution toward a solid solution in an isotropic
manner.

By subtracting the elastic energy from the total energy before the
fitting, the cross validation score decreases by 10% with the same
clusters. The DFT-based convex hull is reproduced with the cluster
expansion. Introducing the elastic energy improves the accuracy of
our Hamiltonian without additional fitting parameters.

KMC. The rejection-free-KMC algorithm is employed to simulate
the time evolution of the system. At each step, an event is selected to
occur from all the possible events with a probability equal to its rate as
a proportion of the total rate,

∑
r

r
i

j j
, where ri is the rate of event i and

∑jrj is the total rate. The time increment is given by μ
∑ r
ln( )

j j
so that the

first-escape-time distribution follows first-order kinetics with an
exponential time decay. Here μ is a uniform random number ∈ (0,
1].7,52

To run KMC, barriers of Li hopping are needed to build the rate
tables. Our cluster expansion is based on energies of local minima and
carries no information about activation energies. By assuming a
parabolic shape of the potential energy surface around a local
minimum, the barrier height can be found analytically as a function of
the energy difference between the initial and final state. A cartoon of

Figure 5. Li fraction as a function of time during discharge.

Figure 6. Li arrangements during charge without elastic energy.
Periodic boundary conditions were applied along the a axis.
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this construction is shown in Figure 7, where the saddle point is
approximated by the intersection point of the two parabolas. When

the initial and final state are isoenergetic, the hopping barrier is
defined as Ea0. If the energy of the final state is lowered by ΔE (from
the green line to the red) due to a change in the local environment,
the barrier is lowered to Ea. This parabolic approximation of the
potential energy surface is the same as that used in Marcus theory for
calculating charge transfer rates. The positive correlation between the
reaction energy and the barrier height, known as the Brønsted−
Evans−Polanyi (BEP) relation, has been widely used in the field of
catalysis.53−55 The curvature of the parabola, k, and the distance
between the two minima, a, can be combined into one variable that is
determined by Ea0. Then, Ea is a function of ΔE,

=k
a

E
2 a

2

0
i
k
jjj

y
{
zzz (3)

=
+ Δ

E
E E

E
(4 )

16a
a

a

0
2

0 (4)

The evaluation of Ea0 is based upon a single vacancy hopping in the
LiFePO4 phase, which has a barrier of 0.3 eV as reported in the
literature.2,9 Li diffusion in FePO4 has a slightly lower barrier, which
could be included in our model by making the curvature of the energy
parabola a function of the Li concentration. However, for simplicity,
the curvature is assumed to be constant. A linear version of eq 4 has
been adopted in other KMC studies.56−58 Li hopping rates were
calculated within the harmonic approximation to transition state
theory59 using a constant prefactor of 1013/s.
The KMC simulation setup is shown in Figure 8. Li hops only

along the b axis. One (010) surface is connected to the Li metal
anode. The other end adopts a reflecting boundary condition, which
effectively doubles the simulation length along b. The anode sites are
always occupied so that they can supply Li as needed and at the same
time are allowed to accept Li regardless of occupancy. The relative
energy level of the anode is controlled by the applied voltage. In this
way, the cathode (010) surface is effectively connected to a Li
reservoir with the chemical potential set by the voltage. Equation 4 is
also applied to calculate the barriers of Li transport from the anode to
the cathode surface sites. The kinetics of Li+ diffusion in the
electrolyte and deposition/detachment from the anode surfaces are
assumed to be sufficiently fast to be ignored. Along the c axis, periodic
boundary conditions are adopted. Along the a axis, (100) surfaces are
introduced to model particles with a finite width.
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