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The dimer method is a minimum mode following algorithm for finding saddle points on a potential
energy surface of atomic systems. Here, the dimer method is extended to include the cell degrees
of freedom for periodic solid-state systems. Using this method, reaction pathways of solid-solid
phase transitions can be determined without having to specify the final state structure or reaction
mechanism. Example calculations include concerted phase transitions between CdSe polymorphs
and a nucleation and growth mechanism for the A15 to BCC transition in Mo. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4873437]

I. INTRODUCTION

The harmonic approximation to transition state theory1, 2

is widely used to calculate reaction rates because it depends
simply upon the energy difference between a local minimum
and a saddle point connected to it by a steepest descent path.
The dimer method is an efficient way to locate these first or-
der saddle points on a given potential energy surface.3, 4 Dif-
ferent from the nudged elastic band method (NEB),5, 6 where
both the reactant and product configurations are needed to find
a connecting saddle point, the dimer method requires only
initial configurations in the reactant state and can (in princi-
ple) find all connected saddles defining the possible escape
pathways from the state. The corresponding product states
are identified by minimizing configurations displaced along
the negative mode of each saddle point found. Using dimer
searches in each new state visited, the adaptive kinetic Monte
Carlo (AKMC) algorithm has been developed to model kinet-
ics and explore the connectivity of the thermally accessible
region of the potential energy surface.7 Possible reaction pro-
cesses and rates are calculated on the fly based on the saddles
found by the dimer method and the system is advanced from
state-to-state by the kinetic Monte Carlo (KMC) algorithm.8, 9

Within the dimer method the dimer consists of two con-
figurations of the system separated by a small distance. The
vector between the two images, τ , is an estimate of the lowest
curvature mode, which is used to bring the center of the dimer
to a saddle point. There are two parts to the dimer method.
First, the dimer is rotated about its center to minimize the to-
tal dimer energy and with this to find the lowest curvature
mode. The rotation direction, ", is along the force difference
between the two images, with the component parallel to τ
projected out. The dimer energy is a sinusoidal function of the
rotation angle on the plane spanned by " and τ , so the rota-
tion angle which minimizes the dimer energy in this plane can
be determined with a single additional force call.10, 11 Second,
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the center of the dimer is translated by climbing up the poten-
tial energy surface along the lowest curvature mode direction
and relaxing in all perpendicular directions. The dimer con-
verges towards first order saddle points and is oriented along
the negative curvature mode defining the reaction coordinate.

For solid-state systems, periodic boundary conditions are
adopted to model infinite systems. Many solid-state reac-
tions, and especially phase transitions, involve changes of
both atomic positions and cell vectors. To correctly locate sad-
dle point configurations in these systems, it is essential to treat
all degrees of freedom on the same footing. Dragging along a
chosen direction in a solid-state system, such as moving the
cell first and then relaxing the atoms in a fixed cell, or vice
versa, is not a reliable way to find saddle points.12, 13 Here, we
show how the dimer algorithm can be extended to include the
cell variables. In this solid-state dimer (SSD), both the cell
and atomic degrees of freedom evolve in concert. The key to
the method is the definition of an appropriate metric to define
the distance between two structures so that the geometry of
the configuration space is independent of the supercell used.

Our approach follows that of the solid-state nudged elas-
tic band (SSNEB), which was developed using the same ex-
panded degrees of freedom to locate saddle points of solid-
solid phase transitions.12 The limitation of any band type
method is that both the initial and final configurations must
be known to initiate the calculation, as well as a suitable ini-
tial interpolation between the two states. This is not a problem
when studying simple diffusion mechanisms but the complex-
ity of phase transitions makes this constraint a major limi-
tation. In the NEB, the identity of each atom in the initial
state must correspond uniquely to a specific atom in the fi-
nal state. This atomic mapping creates a combinatorial explo-
sion of possible final states with system size, differing only
by atom identity. Moreover, the choice of unit cell for each
state is not unique, which further increases the complexity of
the mapping. The SSD method circumvents the atom permu-
tation and cell variation issues by automatically following the
atoms along the path they naturally take to saddle points and
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adjacent minima. Then, combined with the AKMC method,
the SSD is able to automatically discover new crystal struc-
tures and new phase transformation mechanisms.

II. METHODOLOGY

A. Generalized cell and atom configuration space

The energy of a solid-state system represented with pe-
riodic boundary conditions is defined by the atomic positions
r and the cell matrix h (with the cell vectors as rows). In the
SSD, we aim to treat both types of variables in a single gen-
eralized space of atomic and cell coordinates. Changes in the
cell vectors are naturally described in terms of strains which
have different units from the atomic positions. A Jacobian, or
metric, is required to combine them into a generalized dis-
placement vector,

!R = {Jε,!r}. (1)

Here, J is the Jacobian, ε = h−1!h is the strain, and !r is the
change in the atomic positions in Cartesian coordinates. The
strain is calculated with respect to the undeformed cell geom-
etry. It could also be calculated with respect to the deformed
cell, ε = (h + !h)−1!h, but this distinction is not important
for the metric because the two expressions for ε converge in
the limit of !h → 0, where the differential properties of the
space are defined.

Note that the cell vectors h and strain ε are both 3 × 3
matrices, and the atomic displacements !r are N × 3 matri-
ces, where N is the number of atoms in the supercell. Vectors
in the generalized space, !R are therefore (N + 3) × 3 ma-
trices. These dimensions are not, however, important for the
SSD; dot products and norms are all calculated with flattened
vectors.12

To separate atomic and cell changes, it is important to
define the atomic motion in relative coordinates with respect
to the cell vectors. In this way, a pure strain ε in the gen-
eralized space does not contribute to a change in the atomic
coordinates !r. The separation of cell and atomic variables is
accomplished by calculating !r as fractional changes along
the cell coordinates, converted into Cartesian displacements.
As with the calculation of ε, h is chosen as the reference cell
for this transformation.

The most import issue for defining the space of cell vec-
tors and atomic positions is the choice of Jacobian. The Ja-
cobian provides the appropriate metric to combine strain and
atom motion into a single vector. Our principle for choosing
J is that the overall size and shape of the supercell should not
affect the calculation of distances in our generalized space.
Our choice of J is

J =
√

NL, (2)

L =
(

"

N

)1/3

, (3)

where N is the number of atoms in the supercell, L is the
average distance between atoms calculated from the average
volume, and " is the volume of the supercell. J has units of
length, which compensates for the fact that ε is unitless. J is

only calculated once in the initialization of the calculation and
kept constant thereafter. A constant J is sufficient because the
precise value is not as important as how J scales with system
size. Furthermore, the saddle points are stationary and invari-
ant to the choice of Jacobian.

A distance in the generalized configuration space is

∥!R∥ =
√

NL2∥ε∥2 + ∥!r∥2. (4)

One can see from this expression how J balances the rela-
tive weight between strain ε and atomic displacements !r.
Consider, for example, a cell that is expanded into a super-
cell while maintaining the same atomic motion within each
cell. The first term under the square root, corresponding to
strain, increases linearly with the number of atoms in the cell,
due to the

√
N term in J (Eq. (2)). The second term, corre-

sponding to the atomic motion, also increases linearly with
the number of atoms in the supercell. The Jacobian ensures
that the ratio of the two terms remains the same, independent
of the choice of supercell, resulting in a proportional change
of the atomic and cell axes in the generalized space. It is triv-
ial to prove that the dot product and angle between any two
vectors also remain unchanged under different supercell rep-
resentations, which confirms that the configuration space is
undistorted.

Taking the first derivative of the energy with respect to R
gives the generalized force

F =
{

"

J
σ cauchy, f

}
, (5)

where f are the atomic forces and σ cauchy is the Cauchy stress.
One can verify that F · !R is the energy difference due to
the displacement !R. The SSD can be extended to include
external stress in an enthalpy landscape by modifying Eq. (5)
to

F =
{

"

J
(σ cauchy + σ external), f

}
. (6)

B. Solid-state dimer method

The dimer is defined by a point R and a direction τ . In
the generalized space of cell and atomic degrees of freedom
R has two components, h and r. As in Eq. (1), the direction is
defined as τ = {τ ε, τ r}, where τ ϵ and τ r are the components
from strain and atomic motions, respectively. The dimer can
also be defined by its two end points, i.e., the two images of
the system at R1 and R2, which are centered about R and sep-
arated along τ by a small distance ∥!R∥. R1 is calculated
from R and τ in the following way. First, the cell at the end-
point, h1, is calculated as

ε = ∥!R∥
J

τ ϵ, (7)

h1 = hε + h. (8)

Under the strain ε, the Cartesian atomic positions are scaled
from r to a new position vector that we will call r′. Note
that the relative atomic coordinates in these cells are constant,
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when expressed as fractions of the cell vectors. After trans-
forming to the new cell, the atomic positions are updated ac-
cording to τ r,

r1 = r′ + ∥!R∥τ r. (9)

With these definitions of generalized vectors, forces, and dis-
placements, the rest of the SSD method is the same as the
regular dimer method.3, 10, 11 The dimer direction τ is rotated
according to the force differences between the two images;
at the new orientation the end point is updated and the new
forces are calculated; after τ converges to the lowest curva-
ture mode direction, the center of dimer is translated up the
potential along τ and down the potential in all other direc-
tions, using any force-based optimizer, until a saddle point
is found. We note that the dimer rotation is equivalent to the
Raleigh-Ritz optimization14 that is used in the hybrid eigen-
vector following method,15 and the more recent and closely
related gentlest ascent dynamics method.16

III. RESULTS

The SSD method is implemented as an extension of the
atomic simulation environment (ASE) in the companion tran-
sition state (TSASE) code.17, 18 Exploration of the potential
energy surface is done using the AKMC method7, 19 as imple-
mented in the EON simulation package.20 We use high tem-
perature state-to-state AKMC dynamics to facilitate crossing
of high barriers and sampling of both low and high energy
crystal structures.

Two examples are used to demonstrate the capabilities
of the SSD method. In the first example, we revisit the CdSe
system previously explored with the SSNEB.12 In addition to
the transition pathways found with the SSNEB, the SSD finds
many new structures which are illustrated in a disconnectivity
graph.21 In the second example, we calculate a phase transi-
tion between the A15 and BCC structures in Mo. With the
SSD, two concerted mechanisms of the phase transition are
found, without an assumed path or input from molecular dy-
namics. Finally, we combine the SSD and the SSNEB meth-
ods into an efficient strategy for discovering and refining re-
action mechanisms. A small supercell representation serves
as a coarse-grained model of the system which can be quickly
explored by the SSD; the finer details along the pathway of in-
terest, for example, at the interfaces between phases, are then
refined with the SSNEB.

A. CdSe energy landscape

Our first example is the CdSe system with eight atoms
in the supercell, which we have studied using the SSNEB
method in a previous paper.12 The same empirical potential,
consisting of long range Coulomb and short range Lennard-
Jones terms, describes the atomic interactions.22 The initial
structures for SSD searches are generated by the EON server
with random displacements in the generalized space around
the wurtzite (WZ) minimum. After the saddles around the
minimum are found, the EON server builds a table of reac-
tion rates based upon harmonic transition state theory, and
advances the system to a new state with the KMC algorithm.
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FIG. 1. Several phase transition mechanisms found by the SSD. Energy val-
ues are in meV/atom with respect to the lowest-energy WZ structure. Abbre-
viations of the structures are defined in the main text. The purple circles are
Cd and the green are Se.

A high temperature of 5000 K is used to explore the network
of stable crystal structures.

A selected set of saddle points and final state crystal
phases found by the SSD are shown in Fig. 1. Interestingly,
two concerted mechanisms were found for the WZ to rock
salt (RS) transition. Fig. 2 illustrates both the lower energy
path (I), shown in Fig. 1, and a slightly higher energy path
(II). In path I, the cell contracts first along the c-axis and then
along the a-axis; in path II, the cell has contracted both along
the a- and c-axes at the saddle point. This example illustrates
a strength of single-ended saddle search methods which are
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FIG. 2. Top and side views of two pathways from the wurtzite (WZ) to rock
salt (RS) structure. Remarkably, there is the same atomic mapping between
the reactant and product states in both mechanisms.

not biased to a particular path between an initial and final
state. By contrast, the SSNEB, using an initial linear inter-
polation between the two states, would find only one of these
pathways.

The resulting energy landscape is shown in the discon-
nectivity graph in Fig. 3(a). The most interesting high sym-
metry and low energy structures were relaxed with density
functional theory (DFT) calculations,23 yielding the energy
landscape shown in Fig. 3(b). The DFT calculations were per-
formed with the Vienna ab initio simulation package (VASP)
using the PW91 exchange-correlation functional and a ba-
sis set of plane waves with an energy cutoff of 350 eV.24–26

The projector augmented wave method modeled the core
electrons.27, 28 All of the stable structures found with the em-
pirical potential were also found to be distinct minima when
fully relaxed in DFT. Transition states between the minima
were calculated using the SSNEB within the VASP code, us-
ing the minimum energy paths (MEPs) from the empirical po-
tential to initialize the DFT calculations.

The palm-tree shape of the energy landscape calculated
with the empirical potential remains intact with DFT, but the
lowest barrier to escape the WZ phase increases significantly
and the RS and NiAs branches become less stable within the
tree. Overall, the empirical potential gives reliable structures
over the range of local minima as well as reasonable rela-
tive energy differences between them. The phase transition
barriers, however, deviate significantly from the DFT results.
A good compromise can be made by finding structures and
pathways with the empirical potential and then refining the
energetics with DFT.

Finding new crystal structures in this way can be use-
ful for screening of materials with interesting properties. The
energy landscape also provides information about which ma-
terials can be synthesized.29 The WZ and zinc blende (ZB)
are the two structures that are observed in experiments at low
temperature and pressure. The funneled “palm-tree” energy
landscape explains why the two lowest energy states, WZ and
ZB, are relatively easy to synthesize by annealing. The NiAs
structure has also been observed in a constant pressure molec-
ular dynamics simulation, but it may be difficult to stabilize
under experimental conditions due to the shallowness of its
basin of attraction.30 The d-BeO and a-CdSe structures have
not been reported before. Their basins of attraction are deep,
but the entrances are relatively high in the energy funnel. If
these entrances are bypassed at high temperature, the chances
to visit the d-BeO and a-CdSe structures by annealing will be
low.

B. A combined dimer and NEB approach to find
complex pathways

Typically, we are interested in phase transitions between
stable crystal structures in which the end points can be fully
represented by a small supercell. The SSD efficiently finds
concerted mechanisms of phase transitions in small cells,
but these may not be sufficient to describe the details of a
real transition process, such as one involving nucleation and
growth.31 As the cell size is increased, complex and local
mechanisms can be resolved, but it becomes increasingly dif-
ficult for the SSD to find complete phase transition pathways
in the high dimensional configuration space.
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FIG. 3. A disconnectivity graph of the eight atom CdSe system calculated with (a) an empirical potential and (b) density functional theory. Several of the
ordered low energy structures are labelled.
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A natural compromise between the mechanistic limita-
tions of a small cell and the computational cost of a large cell
can be achieved by combining the SSD and SSNEB methods.
We start with a small cell and use the SSD to find interesting
concerted transitions. Then the SSNEB is used with a larger
supercell to allow for local relaxation along the path found by
the SSD. Small random displacements are made to the atoms
in the SSNEB calculations in order to break the symmetry of
the concerted processes found by the SSD. In this way, the
coarse grained mechanisms are found by the SSD and the fine
grained mechanistic details, including local nucleation and
growth, are resolved by the SSNEB.

C. A15 to BCC solid-solid transformation in Mo

In our second example we show how the SSD can be
combined with the SSNEB to efficiently discover and re-
fine details of a complex transformation process in bulk Mo.
Complex crystal structures, such as the A15 phase, can form
in metal alloys with high concentrations of refractory ele-
ments (e.g., Mo) and significantly influence their mechan-
ical properties.32 There is, however, little understanding of
the atomistic mechanisms underlying the formation of these
phases. The A15 phase is usually only observed in binary or
multicomponent alloys, but elemental Mo is a good model
system for this work since theoretical studies showed that in
Mo the A15 phase is only slightly less stable than and thus
competing with the BCC ground state.33, 34 Furthermore there
is an embedded atom method potential for Mo35 that gives
reasonable bulk properties for BCC and A15 as well as an
appropriate value for the energy difference between the two
phases. To investigate the possible transition paths, we ran
several hundreds of SSD searches initiated by making random
displacements to all degrees of freedom in the A15 structure.
Two concerted mechanisms were found as shown in Fig. 4. In
both cases, atomic and cell motions are significant.

Based on the first concerted path in Fig. 4, we expand the
supercell of the initial and final structures and use the SSNEB
to refine the MEP. This cell is expanded into a 5 × 5 × 1
supercell within the plane shown in Fig. 4. In this way, we
are looking at a quasi-2D system with a periodic unit cell in
the perpendicular direction. The converged MEP is shown in
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FIG. 4. Two concerted mechanisms of the A15 to BCC phase transition in
Mo. The moving atoms are labeled, and the two sub-lattices outlined for vi-
sualization purposes. Energies, listed below each structure, are in meV/atom.
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phase transition in Mo as calculated in a 5 × 5 × 1 supercell by the SSNEB
method. Several metastable structures along the MEP are shown.

Fig. 5. In the larger supercell, the initial path, taken to be the
concerted mechanism found by the SSD, relaxes to a lower
energy local transition in which the BCC phase nucleates lo-
cally and propagates throughout the cell. The overall barrier
along the path is reduced from 286 meV/atom in the con-
certed mechanism to 109 meV/atom in the local mechanism.
We note, however, that the barriers for the concerted and lo-
cal mechanisms cannot be compared directly, since they scale
differently with system size; the former with the volume of
the system and the later with the area of the A15-BCC in-
terface. By choosing a large enough supercell, the concerted
mechanism can be relaxed with the SSNEB to a lower energy
nucleation and growth mechanism.12

The nucleus of the new phase forms in the middle of con-
figuration (A) with a sharp increase in energy. In (B) the nu-
cleus takes a clear BCC structure. The BCC phase then grows
along the vertical direction unit cell by unit cell following
atomic motion similar to that shown in Fig. 4. The energy
increases as the nucleus grows. In principle, the state with the
highest energy corresponds to the critical nucleus, but in this
simulation the critical size is not reached before the nucleus
spans the periodic boundary, in (F). From (G), the BCC phase
grows along the two phase boundary and the energy drops due
to the relative stability of BCC over A15 and the fact that the
overall length of the boundary barely increases. From (G) to
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(J) a complete layer of A15 is converted into BCC, one unit
cell at a time. After (J), the BCC growth mechanism is again
affected by the periodic boundary conditions. Configuration
(L) can be viewed as an A15 nucleus, which is relatively un-
stable with respect to the final pure BCC phase.

IV. CONCLUSION

The SSD method is designed to find saddle points in
the generalized configuration space of both atomic and cell
degrees of freedom. The method is demonstrated to find
phase transitions between different crystal structures repre-
sented under periodic boundary conditions. Combined with
the AKMC server in EON, the energy landscape of CdSe is
calculated in the form of a disconnectivity graph. In this way,
the discovery of new phases, as well as a determination of
their stability is possible, which is a helpful guide for synthe-
sis. More complex mechanisms involving both local atomic
motion and collective shifts in the cell can be found with a
combination of the SSD and SSNEB methods. The SSD effi-
ciently finds collective transformation mechanisms in a small
supercell and the SSNEB is able to refine the path in terms of
local atomic motion along the path. This hybrid approach is
used to determine a quasi-2D nucleation and growth pathway
for the Mo A15-BCC phase transition.
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