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Mechanism of the CaIrO3 post-perovskite phase transition under pressure
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Recent experiments have shown that the perovskite to post-perovskite phase transformation in CaIrO3 occurs
more readily at room temperature when a shear stress is applied as compared to isotropic pressure. To understand
this mechanistically, we have calculated the minimum-energy pathway of the phase transition with density
functional theory under different pressure conditions with the generalized solid-state nudged elastic band method.
Our results reveal that shear stress significantly lowers the barrier and stabilizes the product state while isotropic
pressure initially raises the barrier and only reduces the barrier at pressures above 90 GPa. The nonmonotonic
change in barrier with isotropic pressure is explained in terms of an increase in the activation volume under low
pressure and a decrease under high pressure.
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I. INTRODUCTION

Aided by laser-heating in a diamond-anvil cell, the
principal constituent of the Earth’s lower mantle, MgSiO3
perovskite (Pv), was recently found to transform into a
post-perovskite (pPv) structure above 125 GPa and 2500 K,
which corresponds to the pressure and temperature conditions
at the Earth’s lowermost mantle, or D′′ layer.1–3 Following
the discovery of pPv MgSiO3, a number of other ABO3
perovskites, e.g., CaBO3 (B = Ru, Rh, Sn, Ir) have been
transformed into the pPv structure under high-pressure and/or
high-temperature conditions.4–8 Unlike MgSiO3, the Ca-based
pPv are stable at ambient conditions, which makes them
excellent analog materials of MgSiO3.

Recently, high-pressure experiments on Pv CaIrO3 demon-
strate that the Pv to pPv transition can indeed be induced at
room temperature at relatively low pressures in the presence
of a significant shear stress9,10 whereas the Pv phase remains
stable up to 31 GPa at room temperature under isotropic
pressure conditions.11

In order to understand the mechanism of the Pv-to-pPv
transition under pressure, and especially in the presence
of shear stress, it is important to determine the transition
process at the atomic scale. In previous theoretical studies
of MgSiO3, the Pv-to-pPv transition has been determined
under extremely high-pressure conditions (!120 GPa).3,12

It was found that the transition occurs through a shear or
slide mechanism, which implies that shear stress should
facilitate the Pv-to-pPv transition. However, the pressures and
temperatures considered in the simulations were so high that
the conclusions may not be extendable to room-temperature
and lower pressure conditions. All applied stresses in these
previous studies were taken to be isotropic and the role of
pressure was primarily understood as stabilizing the pPv phase;
how pressure affects the transition temperature and activation
energy has not been investigated. Another concern about these
previous studies is that the transition mechanisms were found
only in the degrees of freedom used to define the periodic
cell. This so-called rapid-nuclear-motion approximation13 can
give incorrect barriers, or fail to find a true minimum-energy
path if the reaction mechanism also involves motions of

the atoms within the cell.14 The focus of this work is thus
to investigate the dynamics of the Pv-to-pPv transition in
CaIrO3 under different pressure and shear conditions by using
the generalized solid-state nudged elastic band (G-SSNEB)
method,14 which treats both cell and atomic degrees of freedom
on an equal footing.

A common approximation, within the context of transition
state theory, is that the most probable reaction pathway is the
minimum-energy path (MEP) and the maximum energy along
the path with respect to the initial state (the barrier) largely
determines the rate of the reaction at a specified temperature.
When the reaction pathway is determined, the influence of
an external pressure on the barrier can also be calculated.15

Under constant pressure, the energy landscape E(R) can be
generalized to an enthalpy landscape H (R),

H (R) = E(R) + PV (R), (1)

where R represents the geometry configuration, P is the
external pressure, and V is the volume of the system. The
difference between the energy and enthalpy barrier is the P!V
work done by the external pressure. For solid-state systems,
the pressure can be anisotropic and should be expressed as a
stress tensor. The work W done by the external pressure is then
written in the general form

W = V
∑

ij

σ ext
ij εij , (2)

where σ ext
ij is the stress tensor and εij is the strain tensor.

In the low-pressure regime, the barrier change is primarily
from the work term. When the pressure is high enough, the
barrier geometry can also change, and this contribution to the
activation enthalpy cannot be ignored.16

The main results in this paper are as follows. First, we
investigate the atomic mechanism of the Pv-to-pPv phase
transition by locating the MEP in the enthalpy landscapes
with the G-SSNEB method.14 Our results directly show that
shear stress decreases the barrier while the isotropic pressure
increases the barrier at low pressure and only decreases the
barrier when the pressure is over 90 GPa. This surprising
behavior is a result of the reaction pathway being along
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the shear deformation direction under all pressure conditions
while the volume can either expand or shrink from the reactant
to the saddle point depending on the isotropic pressure applied.
We also find an interesting intermediate minimum between
the two phases in which every other layer of iridium atoms
are coordinated by four oxygen in a square-planar geometry.
A nucleation-like layer by layer growth of the pPv phase is
observed in a sufficiently large supercell.

II. METHOD

For solid-state systems described by periodic boundary
conditions, the geometric configuration vector R includes two
types of variables: atomic positions r, and cell vectors h.
To define distances in this generalized configuration space,
a Jacobian (metric) is required to balance the two vectors. Our
choice of Jacobian is made so that the ratio between distances
is invariant to the supercell representation of the material. To
satisfy this requirement, the distance between two points in
configuration space is defined as

‖!R‖ =
√

NL2‖ε̄‖2 + ‖!r‖2, (3)

which is the norm of the generalized configuration vector

!R = {
√

NLε̄,!r} (4)

= {J ε̄,!r} , (5)

where ε̄ is the average strain, !r is the pure atomic motion
in Cartesian coordinates, N is the number of atoms in the
supercell, L is the average distance between atoms, and
J =

√
NL is the Jacobian, which has the unit of this length.

Based on the general distance defined above, the corresponding
general force is

F =
{

$

J
(σ cauchy + σ ext),f

}
, (6)

where $ is the volume of the supercell; σ cauchy and σ ext are the
Cauchy and the external stress, respectively; f is the regular
atomic force. It is then clear that

F · !R = !E + $σ ext · ε̄ = !H. (7)

In this generalized coordination system, a structure optimiza-
tion following the steepest decent direction is simply !R =
αF. The nudged elastic band method implemented in the
generalized coordination system is the G-SSNEB method.14

In our calculations, the forces and stresses are evalu-
ated with density functional theory (DFT)17 in the general
gradient approximation as implemented in the Vienna Ab
Initio Simulation package.18,19 The Perdew-Wang functional
is adopted for the exchange-correlation energy.20 Core elec-
trons are described by pseudopotentials generated from the
projector augmented wave method,21,22 and valence electrons
are expanded in a plane-wave basis set with an energy
cutoff of 400 eV. A Hubbard model correction is applied
to avoid overdelocalization of iridium 5d electrons due to
self-repulsion. An effective U value of 2.8 eV is chosen to fit
to the band gap of the pPv structure.23 Unlike the electronic
structure, the reaction pathway is not sensitive to small changes
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FIG. 1. (Color online) Properties of the minimum-energy phase
transformation path at zero pressure. The reaction coordinate is the
accumulated configurational change [Eq. (4)] along the path. In
subsequent figures, the reaction coordinate is scaled between 0 and
1; here the letters indicate key structures along the path, shown in
the next figure.

of the U value. For the same reason, spin-orbit coupling (SOC)
is not considered in our calculations either.

A. Results

In contrast with the Pv structure, which has a three-
dimensional network of corner-linked IrO6 octahedra, the pPv
structure consists of IrO6 octahedral layers formed by both
corner and edge sharing. The phase transition thus involves
octahedral rotations and rearrangement. We started with the
atom mapping reported in Refs. 3,10, and 12 as an initial
path, and then calculated the MEP with zero external pressure
using the G-SSNEB. The converged MEP, shown in Fig. 1(a),
is a concerted mechanism with a barrier of 125 meV/atom.
Structures along the MEP are shown in Fig. 2. Along the
transition path, the iridium atom in the center of the cell breaks
two Ir-O bonds and forms a square planar coordination, while
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FIG. 2. (Color online) Structures along the minimum-energy phase transformation path at zero pressure. The polyhedra are IrO6; the big
blue circles are Ca; the small red circles are O.

its four neighboring IrO6 remain intact. Meanwhile the center
IrO4 plane rotates slightly to align the Ir-O bond parallel to
the neighbors as the arrow indicates in structure B. As the cell
continues shearing, two neighboring IrO6 groups move closer
to the center iridium atom and rotate around the shared oxygen
to form two new Ir-O bonds. Movies of the structural evolution
can be found in the Supplemental Material.24

The intermediate minimum along the path, labeled C in
Fig. 2, is characterized with alternating connected square-
planar and octahedral units. The intermediate minimum is so
shallow that this structure might be difficult to stabilize in an
experiment. A Bader analysis25,26 for the images in Fig. 1(f)
shows that a charge transfer occurs between two types of
iridium atoms; the iridium in octahedral sites lose electrons
to the iridium in square-planar sites during the transition. This
can be understood from crystal-field theory. Each iridium atom
in the Pv phase originally has five d electrons in a low-spin
configuration. As some sites become less coordinated, the
elongation of the two oxygen bonds in the z direction lowers
the energy of dyz, dxz, and dz2 orbitals. When the dz2 level
of the square-planar site is close to or lower than the t2g

level of the octahedral site, one paired electron from the latter
level transfers to the former one to maximize the multiplicity.
The Bader charges are not integers, but translated to the
conventional picture of discrete charge transfer, they indicate
that the octahedral iridium now has four d electrons and the
square-planar has six. This charge-transfer picture is consistent
with the increase of the average spin magnetic moment of
iridium in Fig. 1(e). Although the value of the spin moment is
not precise in the absence of SOC, there is no doubt that the
charge transfer results in a spin moment change, which should
be observable in experiment.

The volume change and shear deformation angle are
plotted as a function of the reaction coordinate in Figs. 1(b)
and 1(c). The volume increases first and then decreases, while
the shear angle increases monotonously. Bell’s theory says
that the enthalpy barrier height is a linear function of external
force.16,27 In a first-order approximation, the positions of the
saddle point and minima are not changed by the external
force so that the enthalpy barrier change due to the external
force is only determined by the work term. Extended to
solid-state systems, Bell’s theory says that in the low-pressure
regime the barrier is a linear function of the stress tensor,

H ‡(σ ext) − H 0(σ ext) = E‡(0) − E0(0) − $0
∑

ij

σ ext
ij ε

‡
ij (0),

(8)

where H 0 and H ‡ are the enthalpies of the reactant and
transition state, respectively. E0(0) and E‡(0) are the energies
of the reactant and transition state under zero pressure. The last
term is the work done by the external stress from the reactant
to the transition state. The isotropic compression is against the
reaction direction (volume expansion), thus increasing the
barrier; the shear stress is along the reaction direction (shear
deformation), thus decreasing the barrier. In the high-pressure
regime, shifts of the critical points are significant so that new
G-SSNEB calculations with the external stresses applied are
required.

A set of MEPs and barriers from G-SSNEB calculations
at different external compression conditions are plotted in
Fig. 3. As expected from Eq. (8), the shear stress lowers
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FIG. 3. (Color online) Comparison of different compression
conditions: (a) MEPs under different pressures, with the energies of
the Pv phases aligned to zero; (b) the enthalpy barriers as a function
of pressure.
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FIG. 4. (Color online) MEP at 30 GPa isotropic pressure and
computed properties along the path.

the barrier whereas the isotropic pressure raises the barrier
in the low-pressure regime below 20 GPa. The barrier change,
however, is clearly nonlinear as the pressure increases and
even drops after 30 GPa. After 90 GPa the isotropic pressure
begins to lower the barrier compared to the zero pressure
case. As shown in Fig. 3(a), the stabilization of the pPv
product state due to isotropic pressure is significantly smaller
than that due to shear stress. At 120 GPa the energies of
the two phases are even closer than at 40 GPa because the
Pv phase is more compressible and has a slightly smaller
equilibrium volume at the high pressure. It is worth noticing
that the intermediate minimum no longer exists in the isotropic
pressure calculations.

A detailed analysis at 30 GPa is plotted in Fig. 4. The
volume shrinks slightly at the saddle point while the shear
deformation follows the same trend as under zero pressure.
Taking the first-order approximation from this point, it is
expected that increasing the isotropic or shear pressure will
lower the barrier. The Bader analysis shows that under 30 GPa
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FIG. 5. (Color online) MEP of a larger supercell at zero pressure.
The initial point (A) is the pure Pv phase; the intermediate (F) and
final (G) states are shown in Fig. 6.

the charge transfer between the octahedral and square-planar
sites are inhibited, resulting in a different spin moment
transition along the path. As the pressure increases, the
octahedral and square-planar sites tend to have similar local
environment: becoming stretched octahedra but with different
orientations.

So far we have considered only the concerted mechanism
which is described by a small unit cell. To investigate the
possibility of a more localized phase-transition mechanism,
we enlarge the supercell size along the a and b directions.
The zero pressure MEP calculations for this large cell are
shown in Fig. 5. Instead of every other IrO6 group rotating
at the same time, now one layer transforms first and another
layer follows, which agrees with the observation in Ref. 12.
A laminate structure (G) is observed as a new intermediate
minimum along the path, which is recognized as a mixture
of the Pv and pPv phases rather than a new phase. The ratio
of the two phases in the laminate is limited by the supercell
size selected for the calculation; it does not reflect the actual
situation expected in experiment. The critical nucleus size
of the new phase would be interesting, but it is hard to
estimate with DFT because of the large cell sizes necessary.
Switching from the concerted to the nonconcerted mechanism,

F G

FIG. 6. (Color online) Structures of the intermediate (F) and final
(G) minima of the larger supercell.
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however, does not change the calculated trends of barrier as
a function of pressure and shear stress. The nonconcerted
mechanism introduces a phase boundary into the transition
process, but the boundary does not change the volume or shear
deformation direction along the path, as shown in Figs. 5(b)
and 5(c).

III. DISCUSSION

The role of temperature in the phase transition is to provide
the system with fluctuations to overcome the reaction barrier.
A higher barrier requires a higher temperature for the transition
to occur. An applied stress can change the enthalpy landscape
and thus the barrier height, either an increase or a decrease.
At a given external pressure, the barrier height between
the two phases can be related to the onset temperature of
the transition. For the Pv-to-pPv phase transition in CaIrO3;
the barrier height increases with the external isotropic pressure,
therefore we predict the onset temperature of the transition will
also increase. A suitable experiment for testing our calculated
mechanism is as follows: under a given pressure (helium
mediated), gradually increase the temperature of the Pv phase
to find the temperature where the pPv phase is first observed.
Repeat the process at different pressures and get a series of
onset temperatures. One possible obstacle is that without any
shear stress, the temperature required to activate the transition
might be too high, at pressures below 30 GPa. A possible
solution is to maintain a constant 9-GPa shear stress and vary
the helium gas pressure, which can bring down the barrier
to an observable region and allow the study of the unusual
isotropic stress effect. Measuring the spin magnetic moment
change during the phase transition is another possible way to
verify the predicted mechanism.

The Pv-to-pPv phase transition is similar to the iron bcc-to-
hcp transition. The shear effect and the microstructures we find
here both agree qualitatively with the multiscale model results

in Ref. 28. In that work, the authors adopted the microstructure
from experimental observations while we find the laminate
directly from atomic simulations.

IV. CONCLUSION

In conclusion, we have provided a detailed mechanism
of the Pv-to-pPv phase transition as a continuous path in
the space of both atoms and lattice parameters. Based upon
this path, we have shown how pressure and shear affect the
reaction barrier. The shear stress lowers the barrier, while the
isotropic pressure first raises the barrier and then lowers it with
a crossover point of 90 GPa. These calculations explain the
recent experimentally observed phase transformations under
different compression conditions. Charge transfer between
different iridium sites during the transition is predicted under
low isotropic pressure or pure shear stress, which should
be accompanied by a change in the spin magnetic moment.
Bell’s theory provides a straightforward understanding of the
pressure effect from the transition path within small pressure
deviation, but it may lead to completely opposite conclusion
if the applied stress is far from the perturbation limit.
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