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Abstract

Exact modeling of the dynamics of chemical and material systems over exper-
imentally relevant time scales still eludes us even with modern computational
resources. Fortunately, many systems can be described as rare event systems
where atoms vibrate around equilibrium positions for a long time before a
transition is made to a new atomic state. For those systems, the kinetic Monte
Carlo (KMC) algorithm provides a powerful solution. In traditional KMC,
mechanism and rates are computed beforehand, limiting moves to discretized
positions and largely ignoring strain. Many systems of interest, however, are not
well-represented by such lattice-based models. Moreover, materials often evolve
with complex and concerted mechanisms that cannot be anticipated before the
start of a simulation. In this chapter, we describe a class of algorithms, called off-
lattice or adaptive KMC, which relaxes both limitations of traditional KMC, with
atomic configurations represented in the full configuration space and reaction
events are calculated on-the-fly, with the possible use of catalogs to speed
up calculations. We discuss a number of implementations of off-lattice KMC
developed by different research groups, emphasizing the similarities between the
approaches that open modeling to new classes of problems.

1 Introduction

Modeling the dynamics of chemical and material systems is a fundamental chal-
lenge for computational scientists. While the equations of motion of atomic
scale systems have been known since the days of Newton, their integration over
experimentally relevant time scales still eludes us even given modern computational
resources. With empirical potentials, we can achieve nanoseconds of simulation
time per day, and with ab initio methods, we are limited to picoseconds. But in
most chemical and material applications, we are interested in the human time scales
of seconds to minutes, which are relevant for applications including catalysts and
batteries. Bridging the time scale gap between what we can model with molecular
dynamics (MD) and practical applications is key to making molecular simulations
relevant.

Fortunately, many systems in chemistry and material science are what can be
described as rare event systems. In this case, atoms in the material vibrate around
equilibrium positions for a long time before a transition is made to a new atomic
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configuration, or state. This might be the hopping of a Li atom between sites in a
battery material or a bond-breaking event in a catalytic reaction. With microscopic
kinetics taking place on time scale well separated from phonons, rare event systems
open the door to the application of various numerical solutions based on the
transition state theory that are not available generally: instead of modeling the
vibrational dynamics, which occurs on a femtosecond time scale, transition state
theory can be used to average over the thermal motion and calculate the rate of the
slowest rare event of interest. If all such important rates can be found, the state-to-
state evolution of the system can be calculated on the time scale of the rare events.

A powerful approach for modeling the evolution of a system when the rates
are known is the kinetic Monte Carlo (KMC) method. In traditional KMC, the
mechanism and the rate of every possible event are required before a calculation is
started. This requirement essentially limits atomic KMC simulations to be defined
on a lattice where interactions between atoms and atomic motion can be defined
discretely. In KMC, a table of all possible events is made, and a single event
is chosen with a probability proportional to its rate. The amount of time that
evolves between KMC steps is, on average, given by the inverse of the sum of the
rates. Thus, each KMC step can be accomplished with just a couple of random
numbers and the bookkeeping required to keep track of the possible events; this
computational efficiency allows for KMC simulations of millions or billions of
events and time scale orders of magnitude longer than any single elementary event.

Obvious limitations of traditional KMC are (i) the need to know all possible
events a priori and (ii) the representation of atomic configurations on a lattice.
Many atomic systems of interest, however, especially in the presence of defects or
disorder, are not well-represented by a lattice-based model. Additionally, materials
often evolve with complex and concerted mechanisms that cannot be anticipated
before the start of a simulation; it is the evolution of the system into unanticipated
configuration via unexpected events that make simulations most interesting.

The purpose of this chapter is to describe a class of algorithms, called off-lattice
or adaptive KMC, which relaxes both limitations of traditional KMC. Specifically,
atomic configurations are represented in the full configuration space, and reaction
events are calculated on-the-fly so that the KMC event table is not fixed but rather
adapts as the simulation progresses. Thus, off-lattice KMC can be applied to a much
wider range of interesting systems, and the calculated evolution of the system can
reveal unexpected dynamics that were not anticipated by the modeler.

There are now a number of implementations of off-lattice KMC developed
by different research groups. Later in the chapter, we will discuss some of the
differences in philosophy and specific algorithms, but a primary objective here is
to highlight what is common between off-lattice KMC methods and emphasize that
what may appear to be different methods with different names are in fact often minor
variations on a common theme.
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2 Off-Lattice KMC

Off-lattice KMC was inspired by a number of closely related earlier methods. In
an approach by Sørensen et al., high-temperature MD simulations were used to
determine possible reaction mechanisms between a probe tip and a metal surface
(Sørensen et al. 1996). These pathways were refined using the nudged elastic band
(NEB) method (Jónsson et al. 1998; Henkelman and Jónsson 2000; Henkelman
et al. 2000) to determine the energy barriers and rates at the lower temperature of
interest. While the authors did not fully sample a rate table for KMC, their work
anticipates the philosophy of off-lattice KMC and, in fact, was later developed
into an accelerated molecular dynamics method called temperature-accelerated
dynamics (Sørensen and Voter 2000). A second method with close connections
to off-lattice KMC is the activation-relaxation technique (ART) (Mousseau and
Barkema 1998b) in which local arrangements of atoms were driven away from
their minimum positions on the potential energy landscape, over ridges, and into
neighboring basins of attraction. Again, no KMC event tables were calculated, but
the idea of sampling reaction pathways from local displacements of atoms became
a key idea for off-lattice KMC methods. ART was later extended into an off-lattice
KMC method called kinetic ART, the details of which will be discussed here (El-
Mellouhi et al. 2008; Béland et al. 2011).

The earliest implementation of off-lattice KMC that we know of was in 2001 by
Henkelman and Jónsson (2001). In this method, local atomic displacements were
made to initiate minimum-mode following saddle point searches; these searches
iteratively find the lowest mode of the Hessian and follow this mode to a saddle
point.

Over the 15 years since the first introduction of off-lattice KMC, there have been
a number of significant improvements to the algorithm. Much of the development
has been devoted to identifying and implementing efficient methods for storing
and reusing information about reactive events that have been calculated. Another
key issue, which will be discussed later, is the so-called low-barrier or flickering
problem in which fast events limit the overall time scale that can be achieved
by off-lattice KMC. Today, there are a number of approaches associated with
different aspects of off-lattice KMC methods. Yet, they can generally be described
in the single framework outlined in Fig. 1. In brief, all off-lattice KMC methods
start from an initial state and explore configuration space around the state to find
reactive events which lead to adjacent states. While not absolutely essential, existing
methods tend to focus on finding saddle points on the boundary of the initial
state and use the harmonic approximation to TST to calculate the rate of each
possible reaction mechanism. Current saddle points can be found using a number
of ways: minimum mode following saddle point searches, high-temperature MD,
the recycling of saddle point information from previous steps, or informed by a
database of topologies or structures. As new reaction mechanisms are found, they
are added to the rate table and passed to any database being used to store event
information. Also, as the configuration space around the initial state is searched for
possible reaction events, and the KMC event table is constructed, an estimation of
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Fig. 1 Flow chart showing
the general structure of
off-lattice KMC algorithms

Initialize

Search for saddle points leading to 
neighboring states
  - minimum-mode following methods
  - high temperature molecular dynamics
  - recycling saddles from previous steps
  - database of local topologies
  - database of local structures

New reaction 
mechanism found?

yes

no

Calculate rate and update kinetic 
Monte Carlo (KMC) event table

Update any database of kinetic 
events 

Update confidence in the fraction of 
the KMC event table found

Is the KMC event 
table sufficiently 

accurate?

yes

no

Choose event to new state and 
update the simulation time 
accoding to the KMC algorithm

Is the desired 
simulation time 

reached?

yes

no

Stop

the completeness of the event table is updated. When there is sufficient confidence
in the event table for escaping the current state, a KMC move is made to a new state,
and the process is repeated.
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The various off-lattice KMC implementations differ in the specifics in how
saddle points are found and stored for reuse and how low barriers are managed.
A number of the different philosophies and methods will be discussed next.

3 Search for Saddle Points Leading to Neighboring States

Even for relatively simple systems such as diffusing interstitials in metals, the
complexity of the energy landscape is such that it is not possible to identify by hand
all mechanisms (Henkelman and Jónsson 1999; Marinica et al. 2011). Open-ended
event search methods are therefore necessary to identify the diffusion mechanisms
and their associated barriers. There are two main classes of open-ended methods:
(1) minimum-mode following methods and (2) molecular-dynamics based methods.
Furthermore, local structures and topologies can be classified in order to identify
where saddle points searches should be performed and also in order to classify and
reuse these events in subsequent steps.

3.1 Minimum-Mode Following Methods

The minimum-mode following approach stabilizes first-order saddle points by
finding the direction of lowest curvature on the potential energy surface, inverting
the force in that direction, and relaxing the system, guided by these modified forces.
A number of such methods have been proposed. The method used by Henkelman
and Jónsson was named the dimer method because two images, separated by a
finite displacement, were used to approximate the local curvature (Henkelman and
Jónsson 1999). The dimer method was later shown to be equivalent to a method
developed at the same time in the Wales’ group, called the hybrid-eigenvector
following method (Munro and Wales 1999). In fact, both methods use a Raleigh-Ritz
quotient for iteratively determining the lowest curvature mode and a force inversion
along this mode to stabilize first-order saddle points. Around the same time, ART
was proposed, using a force projection approach to move the conformation toward
saddle point (Barkema and Mousseau 1996). For better stability and convergence,
the force projection was replaced by a Lanczos-based algorithm a few years later,
forming ART nouveau (ARTn) (Malek and Mousseau 2000). It was subsequently
further optimized, as described in details in Machado-Charry et al. (2011). Through
benchmarking (Chill et al. 2014a) and a mathematical analysis (Zeng et al. 2014), it
is now clear that these minimum-mode following methods are essentially equivalent
in terms of computational efficiency for finding saddle points and that they differ
mostly in their specific implementation.

A typical minimum-mode following search occurs in three steps:

1. From a local minimum, an atom and possibly its neighborhood are displaced
in a direction that can be initiate randomly or systematically which aim to
push the system out of the local harmonic state. To avoid collisions between
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atoms, the system can be partially relaxed in the hyperplane perpendicular to the
displacement. This procedure can also be repeated until the lowest eigenvalue
becomes negative or falls below a given threshold (typically between −1 and
−10 eV/Å2 for bulk semiconductors and metals).

2. The system is iteratively maximized along the negative (lowest) eigenvector
and minimized in the hyperplane orthogonal to this direction. In the dimer
and hybrid-eigenvector following methods, this is accomplished by following
an effective force with the component along the negative mode inverted. Any
optimizer, such as L-BFGS (Nocedal 1980), can then be used to converge to
a first-order saddle point. In the ARTn method, the system is moved along the
direction of the negative eigenvalue away from the initial minimum, and the
energy is minimized in the orthogonal hyperplane at each iteration. In ARTn,
if at any point the lowest eigenvalue becomes positive, iteration is stopped, and a
new event search is launched, going back to (1). If the lowest eigenvalue becomes
positive in the dimer method, the system is pushed up along the lowest positive
mode until a negative mode is recovered. For either of these methods, a saddle
point is considered located when the total force on the system falls below a given
threshold (typically 0.01 eV/Å) with a negative lowest eigenvalue.

3. From the saddle point, the system is displaced along the negative mode and
relaxed to find the connecting final minimum, completing the event.

Although the initial deformation is often limited to an atom and its surroundings,
all the atoms in the box are allowed to respond to this change and to move, avoiding
constraints on the nature and the size of the transition state. As the system leaves
the harmonic basin and converges onto a first-order saddle point, however, many
atoms initially displaced fall back close to their original position as events tend to
be local in nature. In ARTn typically 50% of the time the negative eigenvalue is lost
as the system is pushed along the eigenvector associated with the lowest eigenvalue,
and it falls back into the initial minimum, as the structure of the energy landscape
can include shoulders and bumps that do not lead to transition state. Any attempt
to eliminate these lost events requires large initial deformations that typically bring
the system to saddle points that are not directly connected to the initial minimum,
breaking the continuity of the trajectory. With the dimer method, when a negative
mode is lost, the system follows the lowest mode up the potential until a negative
mode is recovered. While this approach allows minimum-mode following searches
to push through positive curvatures, there is a greater chance of finding saddles that
are disconnected from the minimum. The recently developed κ-dimer method, (Xiao
et al. 2014) which uses the isocontour curvature to detect boundaries of the initial
state, largely eliminates the problem of disconnected saddles.

The discovery of disconnected saddles is not always a problem. Wales and
collaborators, for example, use large deformations to facilitate the construction
of a transition matrix and can be then used to extract global kinetic information
(Wales 2002). For other applications, however, it is essential to produce a continuous
trajectory, and all transition states are tested to ensure that they are directly
connected to the initial minimum.
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As long as the lowest eigenvalue remains negative, moving to the saddle point
is straightforward. While a convergence force of 0.01 eV/Å is generally chosen,
ensuring convergence of the energy barrier to less than 0.01 eV within a few hundred
force evaluations, the convergence criterion can be tightened.

3.2 High-Temperature Molecular Dynamics

An alternative to minimum-mode following methods for finding saddle points is
to perform high-temperature MD initiated within the current state and use periodic
quenching to see if a transition has been made. When a transition to a new state is
detected, a double-ended saddle search method is used to find the minimum energy
path between the two states. An efficient strategy for this is to use the climbing-
image nudged elastic band method (Henkelman and Jónsson 2000; Henkelman et al.
2000) and then optionally, to save computational time, switch to a minimum-mode
following search from within the neighborhood of the saddle.

The MD approach for finding saddle points from an initial state is very similar
to the temperature-accelerated dynamics method (Sørensen and Voter 2000). The
difference is that temperature-accelerated dynamics uses high-temperature MD to
find for the first escape that would take place at the low temperature of interest,
using harmonic TST to extrapolate to the low-temperature escape time. For off-
lattice KMC, high-temperature MD is used to find all of the low-energy escape
mechanisms and rates. What is common to both methods is that the use of MD to
search for saddles can provide a rigorous confidence measure in the accuracy of the
simulation. In the case of off-lattice KMC, this confidence measure is the fraction
of the rate table which has been found using the MD saddle searches (Chill and
Henkelman 2014).

Each MD saddle search typically takes more computational work to find a saddle
than a minimum-mode following search. For off-lattice KMC, however, the cost of
finding any one saddle is less important than the cost of evaluating the full rate table.
For that, MD and minimum-mode following searches are competitive. If there is
sufficient knowledge about the system to target minimum-mode following searches,
they can find the rate table more efficiently. However, if there are many processes
available to the system, MD searches can selectively find those which are most
important because events with a higher rate are found more rapidly than slow events
with MD searches (Chill and Henkelman 2014). Independent of efficiency, however,
the main benefit of the MD searches is the confidence measure that it provides and
the simplicity of having just one parameter to set, the high temperature, although
anharmonicity may induce a false sense of completeness as discussed below.
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4 Classifying Local Off-Lattice Environments

It is a good practice to classify local structures in order to identify those on which the
saddle point searches should be centered, as well as to catalog events to be reused
for future use. Several strategies for classifying structures and storing saddle point
information are described here.

4.1 Lattice-Based Classification

To be useful, structural classification must be able to reduce a wide range of global
conformations onto a finite set of locally defined variables. When atomic motion
is limited to a discrete set of positions, there is no ambiguity when comparing
two states: they’re the same or they’re not. For off-lattice calculations, atomic
positions can occupy a continuous range of values. In effect, it is highly unlikely
for two different global conformations to present identical local environments. To
classify and compare structures in an off-lattice system, it is possible to define
a discretization procedure that will map the continuous array of solutions into a
discrete set of states while ensuring that these states share sufficient similarity when
it comes, for example, to their list of diffusion mechanisms.

Pattern recognition approaches, such as the one adopted by Trushin et al. (2005)
with the self-learning kinetic Monte Carlo method (SLKMC), are a step away from
standard predetermined catalogs, allowing to treat a wider range of conformations
and, therefore, better include local strain effects. Nevertheless, this algorithm still
requires an underlying lattice to ensure the discretization of the configurations and
events, and, while barriers are constructed on the fly, the event catalog consists only
of single-atom nearest-neighbor hops characterized using the drag method.

With the self-evolving atomistic kinetic Monte Carlo (SEAK-MC), Xu, Osetsky,
and Stoller Xu et al. (2011) propose an off-lattice approach limited to near
crystalline configurations with an on-the-fly event searching step. A particular
feature of this approach is the construction of active volumes associated with defects
or noncrystalline environments. These defects are identified using a geometric
criterion. Focusing on these defective regions reduces the computational effort for
constructing an event catalog. Dimer (or ARTn Béland et al. 2015a) searches are
used to search for mechanisms, starting from each defect in the active volume.
After a KMC step, only the defects in the affected active volume are sampled for
diffusion; events associated with other regions are simply carried over from the
previous step. Although SEAK-MC can handle more complex environments than
SLKMC, because of its reliance on defects to identify active volume, the method
is not applicable to fully disordered configurations. Since it does not reconstruct
all barriers after each step, moreover, SEAK-MC does not fully take into account
long-range elastic effects.
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Fig. 2 The topological classification of each atom, in k-ART, is determined by its local environ-
ment. (a) An atom and its neighborhood are first identified; (b) vertices are drawn between atoms
within a cutoff distance generally selected between first and second neighbor; (c) the resulting
graph is then sent to NAUTY, which returns an identifier characterizing the automorphic class its
belongs too and a set of transformation onto a reference graph

4.2 Topological Classification

Introducing a topological classification, the kinetic activation-relaxation technique
(k-ART), first published in 2008 (El-Mellouhi et al. 2008), lifts these limitations and
is the first fully off-lattice KMC approach with on-the-fly cataloging.

K-ART attributes a topological key to each atom in a cell based on its local
environment (see Fig. 2): all neighboring atoms within a sphere centered on the
reference atom are considered as vertices of a graph, with edges drawn between
atoms within a specific cutoff, typically, but not always, set between first and second
nearest distances. As a function of the system’s complexity, the sphere radius is
generally set between 6 and 8 Å, including around 50 to 80 atoms. The graph, as
generated, is then sent to NAUTY, a rich topological analysis code developed over
many decades by McKay (McKay et al. 1981; McKay and Piperno 2014) used as a
library by k-ART. NAUTY returns a key characteristic of the graph’s automorphic
class as well as a mapping list into a reference graph. This list is used by k-ART
to map specific local environments onto reference configurations found in the event
catalog.

For each key, a series of ART nouveau event searches is launched centered on
the atom associated with this key. Saddle points with different topological keys
are considered unique and stored. The topological key associated with a specific
atom defines the list of possible events it can undergo. Using the mapping list, it is
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possible to assign a correspondence between the specific environment and the atoms
in the catalog associated with the generic event. Using this correspondence and the
atomic positions of the generic configuration at the saddle point, one can reconstruct
an approximate saddle point for the specific configuration. In the presence of strain,
this saddle point will be close to the reference event, but not exactly the same, and
a few steps of ART nouveau relaxation are needed to converge onto the specific
saddle point, providing a precise information on the geometry and energetics of the
transition state.

K-ART’s basic assumption poses that local minima in the same automorphic
class share a unique set of events, characterized by the topological classifications,
with the geometrical details at the saddle point depending on the elastic deformation.
This allows k-ART to store events based on the local topology and reconstruct their
specific geometry at these specific points on the energy landscape. This assumption
is valid most of the time for three reasons: (i) the correspondence is set to work only
at specific points on the energy landscape – minima and first-order saddle points;
(ii) the correspondence holds therefore only for a given forcefield or, equivalently,
a unique energy landscape; and (iii) the local graph is reconstructed after it is
embedded within the larger two- or three-dimensional space and attached to the rest
of the network. This one-to-one correspondence between topology and geometry
can fail. However, this failure can be identified readily as activated configurations
reconstructed from a reference geometry will not show a first-order saddle point
in their vicinity. In general this error indicates that more than one geometries is
associated with the topology. To lift this degeneracy, k-ART reduced the edge cutoff
criterion until these geometries are assigned to different classes.

PESTO, by Louis Vernon (Vernon et al. 2011; Vernon 2010, 2012), is a variation
on adaptive KMC, which has integrated a number of k-ART’s features. While
topological classification in k-ART is based on the local environment of atoms,
PESTO is based on the local environment of defects. This is a three-step process.
First, defects are identified using a variety of schemes including comparison to a
reference lattice. These defects can be point or extended defects. Second, NAUTY
is used to identify the defect’s topology. While k-ART looks at cluster of atoms
centered on individual atoms, PESTO looks at cluster of atoms centered on defects.
Third, the positions of the atoms in this cluster are compared to those of previously
stored clusters for this topology. If they match those of the stored cluster, the
configuration is considered to be known. If they do not, the configuration is
considered to be new and it is stored.

In 2016, Alexander and Schuh developed a version of k-ART that used a
systematic and orderly search and classified transition based on atomic motion
vectors, rather than a topological classification. Displacement vectors of each atom
between the saddle point and the initial state and between the final and the initial
states are stored for future comparisons. Comparison of two transitions is performed
by comparing the x, y, and z displacement of each atoms of both transitions. The
goal pursued by Alexander and Schuh is to evaluate the convergence of the residence
time by assessing the completeness of search for any configuration in the potential
energy landscape.
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Fig. 3 Kinetic database example of OH and CO reacting on Au(111). When a new reaction
mechanism is found, the configurations of the moving atoms and their first neighbors are stored in
the database. In any subsequent state, the database is queried to see if any known initial or final
states match

4.3 Geometric Classification

An alternative to characterizing local environments by the bonding topology is
to directly use the atomic geometry of the atoms which participate in a reactive
event. In the kinetic database (KDB) approach (Terrell et al. 2012), all atoms
that move by more than a specified distance are considered part of the reaction
mechanisms. The position of those atoms in the initial, saddle, and final states, as
well as their direct neighbors, is stored in the KDB. Figure 3 shows a calculation
of CO oxidation on Au(111) in the presence of hydroxyl, using forces from density
functional theory (Ojifinni et al. 2008). When a hydroxyl formation mechanism is
discovered, the local geometry of the reacting atoms are stored in the KDB. Later
in the simulation, or in an entirely different simulation, the KDB tries to match the
reaction mechanisms stored to the current geometry. Specifically, matching is done
using a geometric fingerprint of each atom in the database structure (initial or final
state geometries). Using a depth-first tree search, neighboring atoms in both the
database and current configuration are matched. If a complete match is made, the
optimal alignment is calculated, and a score is assigned to each candidate, based
upon the difference in atomic positions between those in the database and those in
the current configuration. In Fig. 3, the final hydroxyl structure in the database was
matched to a hydroxyl on the surface in a subsequent step in the off-lattice KMC
simulation. The KDB is then used to predict possible saddle points by moving the
local atoms to their saddle point configuration from the database. These suggested
saddle geometries are used as initial configurations for minimum-mode following



Off-Lattice Kinetic Monte Carlo Methods 13

searches so that the true saddle point and rate of the event in the new environment
are calculated. Importantly, the KDB is used to provide approximate saddle point
configurations for the current geometry based upon what has been seen before. Only
if an exact saddle can be found is the mechanism entered into the rate table. In
this way, there is no additional approximation for off-lattice simulations using the
KDB. As the database stores a greater number of kinetic events, saddle suggestions
become more accurate and converge more rapidly to true saddles, when they exist,
so that the cost of the off-lattice KMC simulation approaches that of KMC.

There are some key differences between the topological classification of reactive
events used in k-ART and the geometric classification in the KDB. K-ART has
the advantage that matching structures from the database to the current simulation
is extremely efficient. Also, if there is sufficient trust in the catalog of events in
the database, then new saddle searches need only to be done when an unknown
topology is reached. In the KDB, on the other hand, the structure matching is not
discretized; geometries which are close, but not exact, are used to suggest saddle
point structures. When these structures are converged, the exact geometry of the
saddle and the activation energy are calculated. If no saddle point is found, the loss
is only the computational time required for the saddle search. Both methods can be
used to store and recover information that has been learned to accelerate off-lattice
simulations.

4.4 Challenges in the Event Reconstruction

Reconstruction of saddle points is crucial in any scheme that creates a generic
catalog built either on geometrical or topological keys as symmetry operations and
elastic deformations in an off-lattice system must be taken account.

To describe this challenge, we focus here on the topological approach used in k-
ART, which creates a catalog based on reference geometries at the initial minimum
and saddle point and uses the knowledge of current geometry at the minimum
and the correspondence between the reference and the current topologies at the
minimum to reconstruct a new saddle point.

1. Atoms of the current minimum configuration are matched with the reference
minimum using the correspondence between the two graphs drawn by NAUTY.

2. A reference frame is then constructed, by comparing the relative positions of the
various atoms in the two configurations.

3. Atoms in the current minimum are then displaced using this reference frame,
according to the difference between the reference saddle point and energy
minimum.

4. The energy and forces are evaluated on the reconstructed activated state. If the
activation energy difference between the reconstructed and the reference state
and the absolute forces in the reconstructed state are below given thresholds,
the reconstruction is considered successful ARTn is applied to converge to the
nearby saddle. If not, then the possibility that many correspondences between the
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Fig. 4 Reconstruction of a saddle point from the topological classification. (a) ART nouveau
generates an event from the initial topology of a central atom (red sphere). (b) Once ART
nouveau search is done, k-ART reconstructs each event associated with the same initial topology:
topological correspondence of two central atoms (blue and red spheres). (c) Applying geometrical
symmetry is needed to the initial structure of the second central atom (blue sphere) as well as the
saddle point and final structures. (d) Finally, guess structures (i.e., saddle point and final applied of
the second central atom) are then refined using ART nouveau to include elastic deformations

reference and current graphs exist is considered and a number of permutations
in the correspondence labeling are attempted, based on various reconstructed
reference frames.

5. When no attempted reconstruction is accepted, k-ART concludes that the corre-
spondence between topology and geometry for this environment is not unique.
The cutoff for defining edges between atoms is then modified, and the topology
is split. If a new topology is found in the way, it is then populated by events, if a
known topology is generated, the algorithm starts over for generating a specific
event (Fig. 4).

The success in reconstruction depends closely on the graph. For compact
systems, such as bulk metals or semiconductors, a graph containing between 50 and
70 atoms, with edges drawn between nearest neighbor atoms, is sufficient. For an
anisotropic system such as graphene, however, it is necessary to define long-enough
cutoff to ensure that planes are linked. Reconstruction also requires that a specific
saddle point related to the generic one exist. For high-enough barriers, typically
above 0.1 eV, a deformation strong enough to make such a barrier disappear would
lead to a change in topology. For low barriers, particularly surrounding unstable
points, this is not always the case. To avoid this problem, one can systematically
recreate the event catalog associated with a given topology when such a low-energy
barrier disappears, either automatically cross or simply ignore them.
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5 Confidence in the Completeness of the Saddle Point
Catalog

An important parameter for off-lattice KMC is determining how many saddle
point searches must be done. Too few searches will lead to incorrect kinetics, but
searches can be computationally wasteful if all important transitions are already
known. Some methods – such as k-ART and SEAK-MC – perform a finite number
of searches for each defect that is encountered. In the case of k-ART, the event
catalog is reused for all know topologies; new searches are performed to complete
the catalog or to complete it, if a new topology is added. New searches are also
performed to improve the event catalog, for very common topologies (searchers are
added every log-10 times a topology is found). In SEAK-MC, the event catalog for
a given defect is destroyed after the execution of one of those events and is rebuilt
from scratch every time a defect is encountered.

When using minimum-mode following searches to find saddles, the complete-
ness of the KMC catalog can be estimated from the statistics of how often new
saddles are found. For example, if an increasing number of searches are done
without finding any new events, there should be a growing confidence that the rate
table is complete. Importantly, however, there can be a wide range in the frequency
at which different saddles are found, and this bias can lead to unquantifiable
uncertainties in the completeness of the catalog (Henkelman and Jónsson 1999).

Another way to estimate the completeness of the event table is to use MD
saddle searches, as discussed previously. The key difference between MD searches
and minimum-mode following searches is that the probability of finding any event
using MD is proportional to its rate. Since we are interested in rare events, basin-
constrained MD at an artificially high temperature is used to determine possible
reaction mechanisms, and harmonic TST is used to calculate the rate of the events
at the low temperature of interest. To the extent that harmonic TST holds, one can
calculate a well-defined estimator for the fraction of the rate table that is missing,
based upon the amount of MD time that is used to determine the rate table and the
events that have been found (Chill and Henkelman 2014).

It should be noted that while high-temperature MD searches can provide an
estimate of the completeness of the catalog, the high-temperature event catalog
may miss events for which the rate decreases as temperature increases. Such
non-Arrhenius behavior would be due to strong entropic effects. Examples of
such behavior include thermal stabilization of nano-voids (Perez et al. 2013) and
dislocations (Kim and Tadmor 2014).

6 The Low-Barrier Problem and Coarse Graining

While off-lattice KMC is able to coarse grain over the fast atomic vibration time
scale and model the slower time scale of the state-to-state dynamics, it is ubiquitous
to have another separation of time scales between the fastest state-to-state events and
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slower time scales of interest. This so-called low-barrier problem describes how off-
lattice KMC simulations can spend all of the computational time on fast events so
that they are not able to reach long time scales.

A key idea that has been used to bridge the gap between fast and slow events
is the framework of the Monte Carlo with adsorbing Markov chains (MCAMC),
which was described by Novotny in 1995 (Novotny 1995). In this pioneering work,
Novotny showed how the kinetics of a system that was partitioned into a set of
transient states and adsorbing states could be solved to give a specific time for
the transition from a transient state to a specific adsorbing state. Remarkably, this
was shown to be possible without adding any approximations beyond the rates that
are used in KMC regardless of the partitioning between transient and adsorbing
states. This means that in an off-lattice KMC simulation, any set of states can be
identified as transient, and the time to transition to a neighboring adsorbing state
can be calculated using the MCAMC approach without additional approximations.

The exact calculation of transition times from transient states to adsorbing states
requires an iterative set of matrix calculations each with dimension of the size of the
total number of states involved. Novotny also showed that it was possible to simplify
this calculation and instead calculate the average escape time from the transient
states via the first moment of the escape time distribution (Novotny 2001). This
approximation was later referred to as the mean-rate method (MRM) by Puchala
et al. (2010) since the escape time from the set of transient states is characterized by
a single rate. The mean-rate approximation works well when there is a separation of
time scales between the transient and the adsorbing states. In this regime, the set of
transient states has been referred to as a superbasin. The mean-rate method reduces
the computational cost of escaping a superbasin to a single matrix inversion.

The MCAMC approach allows off-lattice KMC simulations to switch, at any
point, between a KMC description of the state-to-state dynamics to a transition
between any specified state of transient states to the neighboring adsorbing states.
When MCAMC is done exactly, any set of transient states can be chosen, and
so different definitions of the set of transient states have been proposed. On one
extreme, all visited states can be considered transient so that every transition is
made to a new state. This strategy was described in the Markov web, proposed by
Boulougouris and co-workers (Boulougouris and Frenkel 2005; Boulougouris and
Theodorou 2007). While advantageous in terms of being able to visit new states
as rapidly as possible, this comes at the cost of losing the state-to-state detail of
the trajectory to states that have been visited. Additionally, for simulations which
are out of equilibrium and explore new parts of configuration space, including
all states in the transient space add unnecessary cost to the matrix operations.
Another possibility is to count the number of times that each state has been visited
and combine states into a superbasin when the visit-count exceeds a specified
threshold (Chill et al. 2014b). It is also possible to consider the energy of the
states and the saddles between them (Pedersen et al. 2012) or combine states into
a superbasin when they are connected by rates above a specified value, as in the
basin-autoconstructing MRM (bac-MRM) (Brommer et al. 2014). However the
superbasins are defined, they can grow as more transient states are explored.
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7 How to Reduce Computational Costs

The main computational costs of a typical on-the-fly KMC run are associated
with the evaluation of forces and energies and the construction of neighbor lists.
Neighbor-list costs can be decreased using standard cell and Verlet neighbor
list methods. Computational cost reduction, for force evaluations, requires taking
advantage of the fact that the reference states, in KMC, are effectively at zero
temperature, allowing algorithms to exploit the local nature of activated events.
Given the large literature on the neighbor-list cost-reduction techniques, this section
will focus on the forces.

A number of studies (Mousseau and Barkema 1998b; Pedersen and Luiser 2014;
Xu et al. 2015; Guteŕrez et al. 2016) found that initial deformations applied to
search for saddle points should be local in order to successfully lead faster to a
diverse set of activated events. No more than a few hundred atoms should initially
be involved in the event search, and usually less. As the positions of atoms are
optimized while reaching the saddle point, more atoms will be deterministically
displaced (typically, a few thousand); an even larger number will be displaced as the
system is relaxed into a new minimum. Notably, extended cascade-type concerted
events can take place during this phase (Béland and Mousseau 2013). In other
words, while relaxation should be performed globally, activation can generally be
performed locally to maximize the probability of successfully finding saddle points.

Search algorithms can exploit the locality of activated events (Mousseau and
Barkema 1998b). The simplest way is to impose activation volumes. For instance,
Xu et al. (2011, 2015) showed that a spherical active volume of 4 lattice parameters
is sufficient to capture the activation barrier for vacancy diffusion in BCC iron within
0.001 eV, while an active volume of 6 lattice parameters was sufficient for the case
of the dumbbell interstitial, and an active volume of 7.5 Å could capture the kinetics
of 37-interstitial clusters (Xu et al. 2013). In other words, saddle searches can yield
accurate results by calculating forces and energies over a subset of a few hundred
atoms. It is also possible to find saddle points using small active volumes and then
refine them using increasingly larger ones.

Imposing strict active volumes does have drawbacks. For instance, such an
approach imposes static long-range elastic interactions, preventing a dynamical
reaction of the whole system. To avoid this bias, it is possible to dynamically update
a list of active atoms during the event search (Béland et al. 2011; Joly et al. 2012)
defined by those atoms with a minimum force acting upon them and their neighbors.
As the search progresses, an increasing number of atoms will have non-negligible
forces. This procedure can effectively make computational time scale sublinearly
with system size, with no strong assumptions to be made about the size of the active
volume involved during event searches (Joly et al. 2012).

Such an approach, while elegant, is difficult to implement with standard force
field libraries such as LAMMPS (Plimpton 1995). In this case, one turns to a partial
use of active volume. After a global energy minimization of the whole structure, to
ensure that all elastic effects are fully incorporated in the local minimum, a sphere
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Fig. 5 Graphical description of the local force calculations. Two spheres are centered on the same
atom associated with a given topology. In the inner sphere (green atoms), all atoms can move
following the activation. Atoms in the outer sphere (blue atoms) are fixed and contribute to ensuring
that the correct forces apply to the inner atoms

is drawn around the central atom in the topology. An inner radius defines the set of
atoms that are allowed to move during activation; a second, outer radius includes
fixed atoms needed to ensure that the forces are accurate in the inner part. As a
general rule, the inner sphere contains between 500 and 2000 atoms, while the outer
shell is determined by the force field cutoff radius (Fig. 5) (Trochet et al. 2017).
As with large enough active volumes, the error on the energy is small, and generic
events are generated without further global relaxation at the saddle point nor the
final minimum. Specific events, for their part, see by default the barrier fully relaxed
at the saddle point after a first local relaxation, with the final configuration also
relaxed globally. For systems with simple localized defects, it is possible to avoid
a global relaxation at the saddle point for specific events, provided that the active
volume is large enough, reducing the global relaxation only to accepted minimum
states. The parameters to ensure a given error threshold must then be assessed
specifically for each system. As a general rule, however, the use of local forces on
systems containing 10,000 to 1 million atoms makes the event search almost order 1,
considerably accelerating the algorithm without any significant loss in information
or precision (Raine et al. 2017).

For the simulation of large systems, parallelization is crucial. An advantage of
MC is that every event search can be performed independently, which means that
many computer cores can simultaneously generate events to be added to the catalog.
As mentioned in Sect. 7, one can accelerate the saddle searches by exploiting
the locality of events. By increasing the number of “worker” computer cores
proportionally to the number of saddle points to be generated, and by considering a
local subset of atoms during saddle searches, the runtime between KMC steps will
be approximatively independent of system size, if event management and KMC
overhead costs are negligible.
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8 Advantages of MC: Tricks and Shortcuts Available

Monte Carlo methods present a major advantage over molecular dynamics: it is
much easier to use tricks to focus on the problems of interest, since the system’s
evolution is event-based, instead of being continuous, offering a much better control
on the rules that are used. In this section, we review a number of approximations,
solutions, and tricks that make these off-lattice approaches more competitive that
could be expected through a simplistic evaluation of their computational costs.

The Low-Barrier Problem We have already presented the approach for handling
processes with low barriers. Such methods are crucial for long-time simulations of
complex materials, with many low-barrier events. By solving analytically the in-
basin kinetics, it is possible to effectively perform billions of jumps without having
to compute them directly, allowing the simulation to reach the relevant time scale
instead of being slowed down to a halt by irrelevant mechanisms.

Constant prefactor The use of constant prefactor is not essential, and some of
us compute the prefactor for every event using the harmonic approximation. Nev-
ertheless, for most compact system, the prefactor varies relatively little compared
with the barrier, so it can be given a constant value, leaving the cost of evaluating
a barrier to converging to a saddle point (Valiquette and Mousseau 2003). Clearly,
however, as shown by Koziatek et al. (2013), the harmonic approximation fails in
systems with significant density fluctuations, and it is generally necessary to, at
least, demonstrate the validity of this approximation before using it. Prefactors can
be affected by temperature, when barriers are low with respect to kBT , as discussed
previously. Overcoming this limitation requires likely to turn to thermodynamical
integration, which is computationally heavy and has not yet been automated.

Restricting event searches to specific environments To decrease computational
costs, it is possible to prevent off-lattice KMC calculations from searching for events
in very stable environments. For example, when we are interested by a phenomena
occurring on time scales of vacancy or interstitial diffusion, identifying events from
perfectly crystalline environment, with barriers that are many eVs high, does not
contribute to the dynamics. In some case, also, we can focus on specific regions, near
a defect, for example, so that we may want to ignore the rest of the box, knowing
that it will not contribute to the kinetics of interest. Off-lattice KMC calculations can
therefore be instructed to ignore all crystalline topologies, specific atomic species,
or regions when constructing its catalog.

Biasing pathways While the previous shortcuts do not significantly affect the
kinetics of the system on the time scale selected, it is also possible to give up the
correct kinetics in exchange for exploring specific pathways. This can be done in
many ways. First, a general bias in a given direction can be imposed, either through
a selection bias from a complete event catalog or through the construction of an
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event catalog that only allows moves along a given pathway, specific mechanisms
or a general direction. It is also possible to hand select, at every step, the event of
interest among the list and evolve the system along a biased path.

The list of tricks with Monte Carlo approaches is largely limited only by the
researcher’s imagination. In many ways, it is through these shortcuts that allow a
better focus on the important physics that KMC methods are most useful that, in
addition to accelerating the simulation, they provide a much clearer picture of the
fundamental mechanisms dominating specific processes.

9 Applications

Off-lattice KMC methods have been used to study a wide range of system,
including metal on metal diffusion (Henkelman and Jónsson 2001), interstitials and
vacancy clusters in c-Si (El-Mellouhi et al. 2008; Trochet et al. 2015), methanol
decomposition on Cu, (Xu et al. 2009) Fe (Brommer et al. 2014; Restrepo et al.
2016) and Ni (Mahmoud et al. 2018), ion-implanted relaxation in Si (Béland et al.
2013; Béland and Mousseau 2013; Jay et al. 2017), ion- and neutron-irradiated
metals (Béland et al. 2015b; Lu et al. 2016) and alloys (Béland et al. 2016; Lu
et al. 2016; Osetsky et al. 2016), grain boundary diffusion in Cu (Pedersen et al.
2009), hydrogen diffusion in Al grain boundaries, (Pedersen and Jónsson 2009) a
solid-solid phase transformation in Mo (Duncan et al. 2016) defects in amorphous Si
(Joly et al. 2013), Li impurities in Si (Trochet and Mousseau 2017) and C impurities
in Fe (Restrepo et al. 2016, 2017), and many more.

We review here a few applications that represent some of the strengths and
limitations of these methods.

9.1 Loop Transformation in FeCr

Off-lattice KMC is a powerful tool to simulate the long-time kinetics of point
defects and small defect clusters. However, it is not limited to these relatively
simple problems and can be used to capture slow kinetics involving extended
defects. A good example of such a problem is the transformation of 1/2〈111〉
prismatic dislocation loops in Fe into 〈100〉 prismatic dislocation loops. 1/2〈111〉
and 〈100〉 loops in bcc Fe and FeCr are common interstitial-type defects observed
in neutron- and ion-irradiated samples. The 1/2〈111〉 loops are known to be fast
one-dimensional diffusers, which are closely related to void swelling. 〈100〉 loops
are largely immobile. The ratio of formation of 1/2〈111〉 to 〈100〉 loops is directly
linked to void-swelling rates. However, collision cascades simulations in bulk Fe
predict the formation of 1/2〈111〉 loops, but not of 〈100〉 loops. There must be a
post-cascade mechanism that permits the transformation of the post-cascade defects
into 〈100〉 loops. High-temperature MD simulations – more than 1000 K – of two
1/2〈111〉 loops intersecting and transforming into a single loop suggested that this
reaction solely leads to one large 1/2〈111〉 loop (Terentyev et al. 2008). Using



Off-Lattice Kinetic Monte Carlo Methods 21

Fig. 6 An illustration of the transformation of two 1/2〈111〉 interstitial clusters into a 〈100〉 loop
in FeCr (10 at. % Cr). The red circles indicate the subregion that is changing orientation within the
interstitial cluster. Gray spheres are Fe atoms not sitting on bcc lattice sites, orange spheres are Cr
atoms not sitting on bcc lattice sites, and yellow atoms are empty bcc lattice sites. The simulation
cell contains 16074 atoms. (The figure is adapted from Béland et al. 2015a)

off-lattice KMC in Fe (Xu et al. 2013) and FeCr (Béland et al. 2015a), a novel
mechanism for the transformation of two 1/2〈111〉 into a 〈100〉 was discovered,
which is illustrated in Fig. 6. At 600 K, the waiting time was 200 ns in off-lattice
KMC – i.e., a 0.73 eV overall activation barrier. This mechanism was later confirmed
by molecular dynamics, as reported in Xu et al. (2013). The simulations in FeCr
(10 at. % Cr) also indicated that Cr decoration of the interstitial clusters favor the
transformation to a large 1/2〈111〉, relative to the situation in pure Fe. This was a
good example of a situation where off-lattice KMC was able to predict a mechanism
that helped guide further MD simulations.

9.2 Phase Transformation in Mo

Figure 7 illustrates both the success and limitations of the off-lattice KMC method
for the simulation of a transition between a complex A15 phase to the lower-energy
BCC state in bulk Mo (Duncan et al. 2016). In this calculation, the interatomic
interactions are described by an embedded atom method potential (Zhou et al. 2001).
The formation and dissolution of complex (topologically close-packed) phases are
important both for understanding the hardness and fracture of Ni-based superalloys
(Sinha 1972). In Fig. 7a the phase transition from A15 to BCC is observed with
AKMC to occur at 300 K over time scales of microseconds. The atoms are colored
according to a common-neighbor analysis (Faken and Jónsson 1994) to better
visualize the interface (gray) between the A15 (red) and BCC (blue) phases.

The simulation in Fig. 7a involves only a few hundreds of atoms, and yet we
can already see a system-size-related problem caused by the disorder at the phase
boundary. Specifically, as shown by the disconnectivity graph in Fig. 7b, there are
many states connected to the initial state by low barriers which form a superbasin.
All of these states must be enumerated in the AKMC simulation, as well as the
rates between them. Only then a MCAMC move can be used to find a higher barrier
process leading to interface motion, to the final state indicated. An analysis of the
superbasin states shows that most transitions within the superbasin involve groups of
atoms switching from A15- to BCC-coordinated. The fundamental problem is that
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Fig. 7 (a) AKMC simulation of a transition from the A15 complex phase in Mo to the lower-
energy BCC phase, which occurs on the timescale of microseconds at room temperature. (b) A
disconnectivity graph showing that disorder at the interface between the phases gives rise to many
states connected by low barriers. (c) As the system is made larger, the number of states in the
superbasins grows combinatorially, making the simulation intractable for simulating even a single-
layer transition

when there are several such independent groups of flickering atoms, the total number
of states in the superbasin grows combinatorially with the number of groups. This
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catastrophic situation is shown clearly in Fig. 7c where the supercell is increased
and the total number of states in the superbasin is so large that even a single-layer
transition between A15 and BCC cannot be observed with our off-lattice KMC
machinery.

10 Discussion

Off-lattice KMC approaches have allowed to study the long-time dynamics of
systems that were long off-limits, including systems with many defects, alloys,
interfaces, grain boundaries, and even fully disordered materials. These methods
have also demonstrated that, even for systems that appeared simple, unexpected
mechanisms could play a significant role and that even lattice-based methods would
benefit from constructing their event catalog using unbiased search methods.

10.1 Limits

While open-end saddle point search methods such as ART, ART nouveau, and
the dimer methods are powerful, we still lack a fundamental theoretical support
for establishing the completeness of the generated event catalog. How many event
searches should one launch by atom? When can one be certain that all relevant
events are found? From experience, we know that, with ART nouveau, lower-energy
barrier are found much more often than very high barriers. For a method such as k-
ART, this is certainly positive. Moreover, comparison with MD and other methods,
when possible, suggest that it recovers all previously identified mechanisms. Yet,
it is not possible to assess, even statistically, what the error is with these methods
contrary to what can often be obtained by the MD-based accelerated approaches of
Voter and colleagues (see discussion above). Theoretical bounds or limits would
certainly help greatly to ensure that these simulations do capture the essential
physics.

While off-lattice with or without on-the-fly catalog building KMC approaches
can reach time scales inaccessible to MD, these methods remain much heavier than
lattice-based atomistic KMC and are typically limited to a tens of thousands of
KMC steps, not counting, for course, analytically handled flickers. These methods
can therefore only be applied to systems where physically relevant mechanisms are
largely dominated by local mechanisms.

For example, vacancy-induced solute diffusion in metal, where one must wait for
a vacancy to diffuse near a solute to see the atom jump, is much too expensive for
these types of simulations. To overcome these limitations, one could solve directly
in the equilibrium distribution of vacancies of the system for the time step between
configurations with vacancies near a solute or couple off-lattice KMC with lattice-
based KMC so that the vacancy diffusion away from solutes can be solved efficiently
while the elastic effects and interactions between solutes and points defects are
addressed exactly with off-lattice description. Clearly, other possibilities exist, and
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work will have to be performed in this field to assess the best way of coupling these
scales.

Also, the total number of defects that can be effectively handled by off-lattice
KMC is typically limited to a few hundred defects. Increasing the number of
defects increases the computational cost in two ways. (1) Events must be assigned
to each additional defect. While efficient recycling of events can minimize the
associated computational cost, such recycling is not always an option. For example,
in concentrated alloys, the number of local configurations grows combinatorially
with the number of elements, which limits the usefulness of recycling events.
(2) As the number of defects increases, the total rates increases as well, which
reduces the waiting time of each KMC step. More KMC steps – i.e., more
computational resources – are necessary to reach the same time scales. While
synchronous (Martínez et al. 2008) and asynchronous (Shim and Amar 2006) KMC
parallelization techniques offer a possible solution to this problem, this is still an
unresolved challenge for off-lattice KMC.

Another fundamental limit of on-the-fly KMC is that it probes the potential
energy surface. If the problem of interest involves significant entropic contributions
to the free energy, exploring the potential energy surface might lead to incorrect
predictions. On the other hand, many free energy landscape-based methods suffer
from the “curse of dimensionality” (Althorpe et al. 2016); to be effective, these
accelerated methods necessitate that a proper – and relatively small – set of reaction
coordinates be inputed. In the future, we can imagine on-the-fly KMC being used to
find promising reaction coordinates to be used as input for accelerated free energy
methods.

10.2 Future Developments

Beyond these questions, a number of other developments should be undertaken to
improve the efficiency of off-lattice KMC methods.

Moving beyond master-worker parallelization As larger systems with more
defects are simulated, the computational overhead of the master-worker paralleliza-
tion scheme of current off-lattice KMC codes will become a bottleneck. The way
forward may be to switch to a decentralized parallelization scheme. While it entails
challenges in regard to cataloging, recycling, and load-balancing, such an approach
could significantly increase the scalability of off-lattice KMC.

Recycling basins to handle flickers The absorbing Markov chain algorithm
described above – i.e. the superbasins – can be define states either as global
configurations – cf. Sect. 6 – or local configurations – (Fichthorn and Lin 2013).
The latter can provide a significant acceleration over the former as it can decouple
the kinetics of non-interacting defects. This local treatment of superbasins is
implemented in a number of the current off-lattice codes. A further acceleration
would be to reuse superbasins built previously if the configurations are encountered
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again. This would increase the bookkeeping costs but can largely use the same
geometrical and topological classification tools that are currently used to recycle
events.

Extended defects Off-lattice KMC can handle certain extended defects. For
example, it was used to simulate the propagation of a grain boundary in Mo (Duncan
et al. 2016) and to simulate the transformation of prismatic dislocation loops in
bcc Fe and FeCr (Xu et al. 2013; Béland et al. 2015a). However, the kinetics of
dislocation lines and their interactions with other extended defects has not been
captured yet by off-lattice KMC. This is an important challenge, since MD cannot
simulate such kinetics at strain rates consistent with experiments. However, building
an event catalog for a dislocation line – which contains thousands of interconnected
possible sites where events may be take place – is a daunting task.

11 Conclusion

The last years have seen considerable developments with respect to accelerated
atomistic methods, with access to ever more powerful computers and the introduc-
tion of new algorithms. These tools are giving modelers access to questions that
could not even be asked in a recent past, increasing their interest for communities
that are more turned to applications rather than methodological developments.

This additional interest will be beneficial to the field as it attracts new researchers
with original ideas, knowledge, and skills, which will result in accelerated develop-
ments. Yet, as we have shown here, in spite of some limitations and questions, even
in the current implementations, off-lattice kinetic Monte Carlo methods can deliver
new insights for a wide range of problems dominated by activated diffusion.

The codes are available, and there is no reason today not to try them!

12 Code Availability

Various version of ART nouveau are available at http://normandmousseau.com. The
kinetic ART package can be obtained freely by writing to MT or NM. The EON
code is available at http://henkelmanlab.org/eon/.
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