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Self-assembly of a binary monolayer of charged particles is modeled using molecular dynamics and
statistical mechanics. The equilibrium phase diagram for the system has three distinct phases: an
ionic crystal; a geometrically ordered crystal with disordered charges; and a fluid. We show that
self-assembly occurs near the phase transition between the ionic crystal and the fluid, and that the
rate of ordering is sensitive to the applied pressure. By assuming an Arrhenius form for the rate
of ordering, an optimality condition for the temperature and pressure is derived that maximizes the
rate. Using the Clausius-Clapeyron equation, the optimal point on the phase boundary is expressed
in terms of the thermodynamic changes in state variables across the boundary. The predicted optimal
temperature and pressure conditions are in good agreement with numerical simulations and result
in self-organization rates five times that of a simulation without applied pressure. © 2011 American
Institute of Physics. [doi:10.1063/1.3650370]

I. INTRODUCTION

Self-assembly is a process that transforms a system of
multiple components from a disordered to an ordered state.
Self-assembly is ubiquitous to many natural phenomena,
and it is of great technological importance, particularly in
nanoscale manufacturing. Invariably, self-assembly involves
a delicate balance between the global order and the local
disorder; the latter is essential for removing local defects.
The task of attaining and maintaining this delicate balance
is challenging, and it can significantly benefit from guided
as opposed to spontaneous self-assembly. Experimentally, the
strength of this approach has been demonstrated for colloidal
suspensions,1, 2 block copolymers,3 and protein solutions.4

In this paper, motivated by experiments of Grzybowski
et al.,6 we consider self-assembly of electrostatic binary
monolayers guided by the isothermal-isobaric control. Elec-
trostatic binary monolayers represent rather simple systems,
but this choice ideally fits our principal objective of devel-
oping a fundamental understanding of how to guide the self-
assembly. This work builds on our previous work5 on guided
self-assembly of binary charged monolayers. In our previ-
ous work, we used temperature as a single control parame-
ter and attempted to develop an optimal annealing schedule.5

That study lead to two main conclusions. First, we determined
that self-assembly did not benefit significantly from optimal
time-dependent thermal control, when compared to a prop-
erly chosen isothermal control. Therefore, in this work, we
adopt isothermal control. Second, we determined that thermal
control was invariably inefficient in eliminating voids whose
size was comparable to that of the particles. To address this
issue, in this work, we utilize pressure as an additional con-
trol parameter, as it is ideally suited for closing voids. In-
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deed, we show that self-assembly of highly ordered structures
is possible under properly chosen isothermal-isobaric condi-
tions. Furthermore, we identify optimal conditions which re-
sult in rapid self-assembly, proceeding at a much faster rate
than thermally guided self-assembly.

The paper is organized as follows. In Sec. II, we intro-
duce the model system. In Sec. III, we develop the phase di-
agram. In Sec. IV, we identify optimal isothermal-isobaric
conditions for rapid self-assembly. In Sec. V, we present
a simplified thermodynamic model for determining optimal
isothermal-isobaric conditions for guiding self-assembly. In
Sec. VI, we summarize key results and discuss directions for
further research.

II. MODEL SYSTEM

As in our previous work,5 the model system was chosen
to represent experiments carried out by Grzybowski et al.6

In those experiments, a horizontal tray of oppositely charged
millimeter-size spherical particles was subjected to in-plane
mechanical vibrations. Grzybowski et al. demonstrated that
certain vibration programs would make the particles assemble
into two-dimensional (2D) crystalline structures.

In this study, we considered binary monolayers formed
by 3n charged spherical particles. The particles were divided
into two groups: (i) 2n particles carried a charge q each, and
(ii) n particles carried a charge −2q each. In all other respects
the particles were identical. For large n, a perfectly ordered
state for such a system is a hexagonal lattice in which each
negatively charged sphere is in contact with six positively
charged spheres, and each positively charged sphere is in con-
tact with three negatively charged spheres. The particles were
placed in a square container which was treated as a unit cell of
a periodic structure. Thus, the particles did not interact with
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the container walls, but rather were allowed to penetrate them
and reappear on the opposite side.

Although model systems considered by Grzybowski
et al. should be treated as macroscopic and described using
classical mechanics, we treated our systems as microscopic
and relied on statistical mechanics. This choice was made
to avoid difficulties associated with modeling and simulation
of friction and contact. Accordingly, the system was agitated
via thermal rather than mechanical vibrations. In addition, for
better control, the system was subjected to external pressure.
In all cases, the system was subjected to isothermal-isobaric
conditions. The pressure was applied by varying the container
size.

Electrostatic particle interactions were governed by ba-
sic Coulomb’s law, so that the system’s internal energy was
computed via pairwise summation

U =
∑
i,j<i

qiqj

ε0rij

+ Urep, (1)

where q’s are the charges, r is the inter-particle distance, and
ε0 is the vacuum permittivity. The repulsive term,

Urep = γ
q2

ε0d

[
1 + cos

(πrij

d

)]
, (2)

was added to any pair of particles whose centers were closer
than the particle diameter d: rij < d. A large constant γ was
introduced to penalize particle interpenetration, and as a result
the particles were treated as slightly compressible; we verified
that γ = 100 was sufficiently large.

The long-range electrostatic interactions were computed
using Ewald’s summation method.7 In particular, we used 3D
Ewald method with a special choice of parameters suited for
computing 2D rather than 3D lattice sums.8 Accordingly, the
3D cell was chosen as a cuboid H × L × L, rather than a
square L × L. The edge in the direction perpendicular to the
monolayer plane was chosen H = 3d. This choice was suffi-
cient for effectively turning-off inter-layer electrostatic inter-
actions.

Throughout the paper, we use the particle diameter d as
the unit of length, the particle mass m as the unit of mass,
and q−1

√
ε0md3 as the unit of time. The chosen time unit is

comparable to the period of vibrations of two particles near
contact. The temperature T was measured in the reduced units
of energy alleviating the need for using Boltzmann’s constant.
All quantities of interest are defined as per particle averages.

III. EQUILIBRIUM

Under isothermal-isobaric conditions, the system even-
tually reaches equilibrium. Thus, in identifying optimal con-
ditions for ordering, we must first identify their range. After
that we can identify optimal conditions leading to rapid kinet-
ics. Accordingly, in this section, we construct a phase diagram
of equilibrium states in the two-dimensional control space of
temperature and pressure, (T, P).

The phase diagram is shown in Fig. 1. It consists of three
domains, each representing a phase. Those phases are as fol-
lows:

FIG. 1. The phase diagram of the system.

� disordered (fluid) phase (D);
� geometrically but not electrostatically ordered phase

(G);
� geometrically and electrostatically ordered (ionic

crystal) phase (E).

Let us make it clear that the phase E does not neces-
sarily have a perfect hexagonal structure. A small popula-
tion of defects is not only possible but rather expected, as
it is always the case with microscopic systems at non-zero
temperature.

The phase diagram was constructed by computing points
on the phase boundaries, shown by hexagonal symbols in
Fig. 1. Those points were computed using the maximum fluc-
tuations in the internal energy U,

σU =
√

〈U 2〉 − 〈U 〉2

T
(3)

and volume V,

σV =
√

〈V 2〉 − 〈V 〉2

V T
, (4)

where the angular brackets denote ensemble averaging.15

To this end, we fixed P and searched for the peaks of σ U

and σ V by traversing the phase space along the T-axis. The
phase boundaries were identified according to the following
algorithm:15
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FIG. 2. Fluctuations in energy, σU, and volume, σV, as functions of temper-
ature and pressure; peaks show locations of phase transitions.

� if a temperature T realizes maxima of both σ U and σ V,
then the point (T, P) is on the boundary between the
phases D and E ;

� if a temperature T realizes a maximum of σ U but not
of σ V, then the point (T, P) is on the boundary between
the phases G and E ;

� if a temperature T realizes a maximum of σ V but not of
σ U, then the point (T, P) is on the boundary between
the phases D and G.

This algorithm is self-explanatory once it is realized that
the transition between G and E is associated with essentially
constant volume, and the transition between G and D is asso-
ciated with minimal changes in the internal energy. The peaks
of σ U and σ V for a broad range of conditions are shown in
Fig. 2.

For prescribed isothermal-isobaric conditions, the inter-
nal energy and volume were computed using replica ex-
change molecular dynamics (REMD) (Ref. 10) as imple-
mented in the publicly available code LAMMPS.11 Constant
temperature and pressure of the system were maintained with
a Nose-Hoover thermostat12 and a Berendsen barostat,13 re-
spectively. Each replica consisted of 1020 particles. To im-
prove the sampling at high pressures, we augmented REMD
with additional Monte Carlo moves. Each move attempted
to switch two oppositely charged particles. Both the particle
and replica exchanges were based on the standard Metropo-
lis acceptance criterion for an isothermal-isobaric statistical
ensemble.14 The maximum σ U and σ V were obtained by av-

eraging over 100 realizations. Further, we verified that results
shown in Fig. 2 were insensitive to particulars of the initial
configurations.

Certain properties of the phase diagram can be readily
explained using the Clausius-Clapeyron relationship for the
phase boundary quantities:9

dP

dT
= [[S]]

[[V ]]
. (5)

Here, [[...]] denotes the jump across the phase boundary and
S is the entropy.

Across the boundary G − E , [[V]] is small. Therefore,
this boundary is essentially a vertical line; the large but fi-
nite slope of this line is due to slight compressibility of the
particles.

The phases G and D have different particle densities, but
both are characterized by the absence of electrostatic order.
Therefore, across the boundary G − D, the dominant contri-
bution to [[S]] is due to the difference in free volume:

[[S]] ∝ log VD − log VG = log

(
1 + [[V ]]

VG

)
; (6)

here, the subscripts refer to the phases. At high pressures,
[[V ]] � VG , and therefore the right-hand side of Eq. (6) can
be linearized, so that we obtain

[[S]]

[[V ]]
∝ 1

VG
. (7)

Since the particles are virtually incompressible (γ � 1), VG is
essentially constant, and therefore, for large P, the boundary
between the phases G and D is also a straight line.

IV. KINETICS

In this section, we are concerned with kinetics of tran-
sition to the phase E . Electrostatic order in the system was
measured using the order parameter

η(t) = Û (0) − Û (t)

Û (0) − �
, (8)

where the hat refers to the inherent as opposed to the in-
stantaneous structure. The inherent structure is obtained upon
quenching of the instantaneous configuration under constant
pressure. The inherent structure concept was introduced by
Stillinger and Weber16 and we adopted it because it allowed us
to evaluate structural regularity at different points of the phase
diagram. In Eq. (8), t denotes time and � denotes the internal
energy of the perfect hexagonal lattice. The order parameter η

is small in the disordered phase and equal to one for a perfect
hexagonal lattice. The constant pressure associated with the
inherent structure may differ from the applied one. In com-
paring the histories η(t) under different isothermal-isobaric
conditions, we consider intrinsic structures at zero pressure.
In contrast, in studying microstructural evolution under fixed
isothermal-isobaric conditions, it is more natural to consider
intrinsic structures by maintaining the applied pressure.

Figure 3 shows the data η(t) for several points (T, P) lo-
cated inside the phase E on the phase diagram; the chosen
points are shown in the figure inset. Conditions outside of
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FIG. 3. Order parameter η as a function of time for selected T and P.

the phase E would not lead to ordering and were not consid-
ered. The histories corresponding to the points located near
the phase boundary are shown using closed symbols, while
the points at lower temperatures, away from the phase bound-
aries, with open symbols. Among the points near the bound-
ary, the fastest approach η → 1 corresponds to the point below
the triple-point junction; in Fig. 3 this history is shown with
triangular symbols.

Numerical results presented here were obtained using
MD. All simulations were conducted with 1020 particles
whose initial positions represented a disordered state, deter-
mined by equilibrating the system at T = 1 and P = 0.4. It
was established that details of the initial state were insignifi-
cant as long as it was well inside the phase D on the phase di-
agram. Furthermore, the simulations were repeated with 2340
particles and it was verified that the two sets of results were
in agreement.

A better understanding of the ordering mechanism comes
from examining microstructural evolution. To this end we
studied the system of 2340 particles. As seen in the left col-
umn of Fig. 4, in the low-pressure regime (circular symbols
in Fig. 3), ordering is slowed by system’s inability to close
inter-cluster voids. In contrast, as seen in the right column of
Fig. 4, in the high-pressure regime (hexagonal and diamond-
shaped symbols in Fig. 3), ordering is slowed by insuffi-
cient volume available for electrostatic reordering. Inherent
structures shown in Fig. 4 were quenched at the simulation
pressure.

Figure 5 shows evolving microstructures under optimal
isothermal-isobaric conditions (closed triangles in Fig. 3).
Here, we use the term optimal rather loosely, by referring
to the best conditions for ordering among the limited set of
conditions chosen for simulations. The left and right columns
of Fig. 5 show the instantaneous and intrinsic microstruc-
tures, respectively. Visually, optimality can be associated with
a competitive balance between vacancies (low-pressure de-
fects) and electrostatic irregularities (high-pressure defects).
In comparing optimal versus non-optimal conditions and mi-
crostructures, it is important to keep in mind that the total
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t

FIG. 4. Evolving microstructures under low (left column) and high (right
column) pressures.

simulation time for the former (Fig. 5) is roughly one order of
magnitude shorter than that for the latter (Fig. 4).

Simulation results for the points away from the bound-
ary (open symbols in Fig. 3) demonstrate that an optimal
(T, P) point should be close to the phase boundary. In general
though, the issue of proximity to the phase boundary is a del-
icate one. In the present context, it is further complicated by
the fact that the phase boundaries have finite width δT due to
the finite system size. We selected the points near the bound-
ary by shifting them by 0.1 T* to the left from the bound-
ary, where T* is the transition temperature on the boundary
of E . In all cases, this shift was larger than δT/2, so that the
isothermal-isobaric conditions were located inside the domain
of phase E .

V. THERMODYNAMIC MODEL FOR OPTIMAL
CONDITIONS

In this section, we present a basic thermodynamic model
that allows us to establish explicit relationships between ki-
netic and equilibrium properties and to obtain a simple math-
ematical expression for the optimal conditions.
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FIG. 5. Evolving microstructures under optimal pressure.

Suppose that the optimal point (T0, P0) belongs to a curve
P = ψ(T), so that T0 can be found from the equation

∂k

∂T
+ ∂k

∂P

dψ(T )

dT
= 0, (9)

where k is the rate of ordering; once T0 has been determined,
one obtains P0 = ψ(T0).

Assume that the transition between the phases D and E is
governed by a mechanism whose rate obeys the exponential
law for state transitions:17

k = ν exp

(
−�G(T , P )

T

)
. (10)

Here, ν is a constant characteristic frequency and �G is the
activation free energy barrier between the states. By combin-
ing Eqs. (9) and (10) we obtain

�G − T
∂�G

∂T
= T

∂�G

∂P
ψ ′ . (11)

Let us rewrite this equation using the following definitions:

�V := ∂�G

∂P

and

�U := �G − T
∂�G

∂T
− P

∂�G

∂P
,

so that Eq. (11) takes the form

�U

�V
+ ψ(T ) = T ψ ′(T ) . (12)

Based on simulation results presented in Sec. IV, we as-
sume that the curve ψ is the boundary between the phase
domains D and E . On the surface, this is a bad assumption
because (T0, P0) must be inside the phases E . Nevertheless,
our intent is to adopt the assumption and determine the point
(T*, P*) on the phase boundary, and then determine the op-
timal point as (T0, P0) = (0.9T*, P*), by using the shift
discussed in Sec. IV. With the assumption that ψ is the
boundary, Eq. (12) can be combined with Clausius-Clapeyron
equation (5) to obtain the optimality condition in the form

�U

�V
= [[U ]]

[[V ]]
. (13)

The right-hand side of Eq. (13) can be approximately
evaluated using Lindemann’s melting criterion. According to
that criterion, melting occurs when the average inter-particle
distance increases by a factor of 1 + α, where α is a small
constant; following Ref. 18 we set α = 1/7. The increase in
inter-particle separation is associated with the changes in the
activation internal energy and volume, estimated as

�U =
(

1

1 + α
− 1

)
�

and

�V =
√

3

2
[(1 + α)2 − 1],

respectively. With these estimates, Eq. (13) becomes

[[U ]]

[[V ]]
= 0.36.... (14)

We solved this equation for the data used for constructing the
boundary between the phases D and E and obtained the opti-
mal point (T0, P0) = (0.1, 0.3).

To verify this estimate for the optimal point we conducted
MD simulations using the following three-step procedure:

� Select a point (T*, P*) on the boundary between the
phases D and E .

� Equilibrate the system under the conditions
(1.1T*, P*) and use that state as the initial one.

� Let the initial state evolve for 4000 time units under
the conditions (0.9T*, P*).

The ordering rate k for prescribed (T*, P*) k was obtained
by computing the best fit to the equation

η = 1 − exp(−kt), (15)

where η is the order parameter defined in Eq. (8).
Figure 6 shows the transition rate for various pairs

(T*, P*) along the phase boundary between the phases D and
E . The circles represent the points on the boundary and the
crosses represent the points (0.9T*, P*); the numbers are the
corresponding transition rates per 104 time units. The square
denotes the optimal point predicted by the simplified model.
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FIG. 6. Average ordering rate for various pairs (T*, P*) along the phase
boundary between the phases D and E .

Considering the assumptions involved in deriving Eq. (14), its
prediction for the optimal point is quite good.

VI. DISCUSSION

This paper is concerned with controlling self-assembly
in binary monolayers of charged particles. The paper was
motivated by experiments carried out by Whitesides et al.6

on controlling macroscopic self-assembly, and by our pre-
vious work,5 on modeling and simulation of thermally con-
trolled microscopic self-assembly. In particular, in our pre-
vious work, we observed that (i) isothermal control can be
almost effective as optimal time-dependent thermal control,
and (ii) neither electrostatic interactions nor thermal con-
trol were particularly effective in eliminating voids formed
during self-assembly. Accordingly, this paper focuses on the
temperature-pressure control under isothermal-isobaric con-
ditions.

From our simulations, we determined that optimal
isothermal-isobaric control is up to five times more effec-
tive than thermal control alone. This statement is based on
comparing the histories for the order parameter η defined
in Eq. (8) and microstructures shown in Figs. 4 and 5.
While isothermal-isobaric control is capable of delivering mi-
crostructures with low defectivity, those microstructures are
not perfect, and should not be expected to be perfect, sim-
ply because microscopic systems are intrinsically imperfect
at non-zero temperatures. Of course, there are no fundamen-
tal reasons against realizing perfect macroscopic structures.
In this regard, let us mention that isothermal-isobaric con-
trol is ineffective for eliminating defects such as dislocation
and twins. Signatures of those defects can be seen in mi-
crostructures under high-pressure conditions (Fig. 4), and,
as basic crystal physics suggests, those defects are expected

to persist as the system size increases. The natural control
for eliminating those dislocation and twins is shearing the
system.

In identifying optimal temperature and pressure condi-
tions, we adopted several assumptions that allowed us to re-
late those conditions to the phase diagram. Instead of verify-
ing the individual assumptions, we verified the approximation
itself, and determined that it agrees well with MD simulations.
Some discussion of Eq. (13) is warranted. For the sake of ar-
gument, both sides of Eq. (13) can be divided by P,

[[U ]]

P [[V ]]
= �U

P�V
. (16)

In this form, the right-hand side of the equation is the non-
dimensional ratio of the energy to the mechanical work re-
quired for ordering at some pressure P. The left-hand side is
the non-dimensional ratio of the change in internal energy to
the associated mechanical work due to the phase change. In
general, there is no reason to assume a simple relationship
between the kinetic parameters �U and �V and the equi-
librium changes across the phase transition [[U]] and [[V]].
Equation (16), however, serves the purpose of identifying the
point on the phase boundary with the optimal balance between
T and P. At this point the effect of accelerating the kinetics
by increasing the temperature exactly matches the resulting
penalty in terms of the mechanical work.
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