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Abstract. A simple macroscopic model is used to determine an optimal
annealing schedule for self-assembly of binary monolayers of spherical particles.
The model assumes that a single rate-controlling mechanism is responsible for
the formation of spatially ordered structures and that its rate follows an Arrhenius
form. The optimal schedule is derived in an analytical form using classical
optimization methods. Molecular dynamics simulations of the self-assembly
demonstrate that the proposed schedule outperforms other schedules commonly
used for simulated annealing.

In general, the term self-assembly refers to a non-intrusive process that transforms a system
of components from a less to a more ordered state. There are numerous examples of self-
assembly [1] including colloids [2], suspensions [3] and biological systems [4].

This work is motivated by self-assembly in model systems proposed by Grzybowski
et al [5]. Those systems are horizontal monolayers of oppositely charged millimeter-size
spherical particles placed inside a large square container. In such systems, the electrostatic
interactions alone are not sufficient for arranging randomly placed particles into ordered lattices,
as the particles are trapped in meta-stable states. To escape those traps, the container was
subjected to vibration in the horizontal plane. With properly chosen vibration parameters it
was possible on the one hand to escape meta-stable states and, on the other hand, preserve
ordered lattice states. While Grzybowski et al were able to choose vibration parameters leading
to self-assembly, their search strategy was heuristic and limited to very basic vibration histories.
Our goal here is to develop an optimal strategy for guiding self-assembly in systems similar
to those considered by Grzybowski et al. We note that the setup in [5] is not the only way to
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obtain a square lattice in 2D: for example, it is possible to obtain a square lattice by tailoring
the interaction potential in a single component system [6].

The systems considered by Grzybowski et al are very challenging for direct numerical
simulations, primarily because they require modeling of friction and contact. Therefore we
considered similar but simpler systems governed by basic rules of molecular dynamics (MD).
We restricted ourselves to monolayers in which there were the same number of positively and
negatively charged particles. Other than the charge sign, the particles were identical spheres
of radius a and mass m. A perfectly ordered state for such monolayers is a square lattice. The
electrostatic interactions of two particles with charges qi and q j was computed using Coulomb’s
law,

U =
qiq j

ε0r
, (1)

where ε0 is the vacuum permittivity and r is the distance between the particles. The
container was treated as electrically neutral. Contact interactions were described by a repulsive
potential

Urepulsive = κ
q2

ε0a

(
δ

2a

)3

, (2)

where δ is the penetration distance between two overlapping surfaces. The penalty constant
κ = 103 was chosen large enough to ensure small penetration distances. The particles agitated
by the vibrating container were modeled as a canonical ensemble in which the temperature
was maintained with a Nose–Hoover chain thermostat [7]. Throughout the paper, we measure
energies in the units q2ε−1

0 a−1 and the temperature θ in the units q2ε−1
0 a−1k−1

B , where kB is
Boltzmann’s constant. Time is measured in the units of q−1

√
ε0 ma3, which is comparable to

the period of vibration of two particles.
An optimization problem for a typical system can be stated as follows. Given an initial

state of the system, determine a temperature history such that the system reaches a desired state
as quickly as possible. Although this is a standard optimal control problem, in our case, we
have to deal with a stochastic setting and a large problem size. In this regard, let us observe that
we have already replaced a large number of the microscopic variables (velocities) with a single
macroscopic variable (temperature). In what follows, we develop a simple macroscopic model
that allows us to obtain a closed-form solution for the optimal temperature history.

The proposed macroscopic model is based on an energetic description of the system. To
this end, we consider the following energies:

• U ∗ is the potential energy of the instantaneous configuration.

• U is the potential energy of the instantaneous configuration subjected to a local energy
minimization. Following [8], we refer to this configuration of mechanical equilibrium as
the inherent structure. Figure 1 illustrates the difference between U ∗ and U .

• V is the ensemble average of U .

In the proposed model, we assume that U fully describes the system state and θ is an
externally controlled input. At constant temperature, if the system is left to its own devices,
it will eventually approach thermodynamic equilibrium, so that U → V . The simplest model
describing this process is

dU

dt
= −

U − V

τ
, (3)
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Figure 1. U ∗ and U for a system of 400 particles. The instantaneous and
minimized configurations are shown at three temperature values, θ = 0.023,
0.018 and 0.013.

where τ is the relaxation time at a given temperature. In what follows, we extend the model one
step further by assuming that it holds for non-isothermal processes. Under this assumption, we
treat τ and V as functions of θ .

The function V (θ) was obtained by fitting simulation results into the functional form

V = 9 + γ exp

[
−β

(
1

θ
−

1

θ∗

)]
(4)

in which the pre-exponential factor γ , the energy β, the melting temperature θ∗ and the ground
state energy 9 are treated as fitting parameters. We chose this functional form based on the
equilibrium density of point defects in a perfect crystal at low temperature [9]. For each
temperature, we computed U for multiple realizations, and then computed V as the average. The
number of realizations was chosen such that at each temperature the standard error in V did not
exceed 1.6 × 10−3 (10% of the difference between V (θmax) and 9). Simulation results (discrete
symbols) and the fit (continuous line) for γ = 0.007, β = 0.36, θ∗

= 0.018 and 9 = −0.40 are
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Figure 2. Energy of the equilibrium inherent structures for a system of 400
particles. Discrete symbols are simulation data and the continuous line represents
the fit to the functional form (4).

shown in figure 2. These data show a transition between low- and high-temperature regimes
near θ∗. We are mostly interested in the low-temperature regime, because of its importance
to self-assembly. In principle, obtaining the correct equilibrium value of V by averaging may
not always be feasible due to large relaxation times at lower temperatures. To evaluate the
feasibility of this approach in our computations we turn to a discussion of the relaxation
time τ .

The relaxation time τ(θ) is chosen in the Arrhenius form

τ =
1

ν
exp

(α

θ

)
, (5)

where ν and α are dimensionless fitting parameters. These parameters were evaluated for a
system of 400 particles using MD simulations at a fixed set of temperatures. In all cases, the
initial configuration was obtained by equilibrating the system at temperature θ = 0.025. Then
the system was allowed to relax to equilibrium at the desired temperature. The results of the
simulations are shown in figure 3. The data were fitted in the range 0.6θ∗ 6 θ 6 θ∗. For these
data we obtain the Arrhenius fit with the energy barrier α = 0.043 and frequency ν = 0.012.
Note that in this range of temperatures, dimensionless relaxation times estimated from (5)
are in the thousands, which is well below the limitation imposed by the computational speed.
Therefore it is feasible to compute V via ensemble averaging.

To rationalize the parameters of the Arrhenius fit in terms of a microscopic mechanism,
we calculated a collection of energy barriers for diffusion on the surface and in the bulk. These
calculations were done with the climbing-image nudged elastic band method to determine the
minimum energy pathway and saddle point between minima [10]. Figure 4 shows the lowest
energy mechanism for surface diffusion with a barrier of 0.05. In contrast, for bulk diffusion the
barrier is in the range of 0.3–0.4. Thus we suggest that the likely rate-controlling mechanism is
surface diffusion.
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Figure 3. Arrhenius fit for the rate of relaxation. The red and blue colors
represent simulation results at temperatures, respectively, above and below θ∗.
The dashed curve represents an Arrhenius fit of the data for θ < θ∗.
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Figure 4. Activation barrier for the surface diffusion mechanism.

In summary, for n = 400 the model is governed by equations (3) and (4). The model
parameters are

ν = 1.2 × 10−2, α = 4.3 × 10−2, β = 3.6 × 10−1, γ = 7.0 × 10−3,

θ = 1.8 × 10−2, 9 = −4.0 × 10−1.

Using standard methods of optimal control theory [11], one can formulate the following
optimization problem. For the state equation

dU

dt
= −

U − V

τ
≡ f (U, θ) (6)

the initial condition

U (0) = U0
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and the termination condition

U (tf) = Uf

minimize the cost function

8 =

∫ tf

0
1 dt. (7)

Here U0 and Uf are prescribed values and tf is the final time to be determined as part of the
optimal solution.

The Hamiltonian corresponding to the stated optimal control problem is

H = 1 + λ f, (8)

where λ is the co-state variable. It allows us to express the optimality condition for θ as

∂ H

∂θ
= 0, (9)

which yields the optimal relationship between U and θ :

U = 9 +
(α + β)γ

α
exp

(
β

θ∗
−

β

θ

)
. (10)

With this relationship, equation (6) becomes an ordinary differential equation for θ . After
obvious manipulations we obtain the optimal schedule

θ(t) =
α

log[exp (α/θ0) + ανt/(α + β)]
, (11)

with the initial temperature

1

θ0
=

1

θ∗
−

1

β
log

[
α(U0 − 9)

(α + β)γ

]
. (12)

Let us note that logarithmic time-dependency, similar to that in equation (11), commonly arises
in optimal scheduling [12]. The final time is expressed in the form

tf =
α + β

αν

[
exp

(
α

θf

)
− exp

(
α

θ0

)]
(13)

with the final temperature

1

θf
=

1

θ∗
−

1

β
log

[
α(Uf − 9)

(α + β)γ

]
. (14)

It is straightforward to establish that the optimal schedule can be also used to achieve the
minimum Uf for a fixed tf. This view of optimality is adopted in simulations described next.

We compared schedule (11) with four types of schedules commonly used in simulated
annealing, which are listed in table 1. Schedule (i) is equivalent to vibrating the container
at a fixed intensity and is directly related to the strategies implemented in the experiments
of Grzybowski et al. Schedule (ii) results in linear temperature history. Schedule (iii) lowers
the energy at a constant rate [13] and (iv) is a constant thermodynamic speed schedule [14].
Schedules (iii) and (iv) require knowledge of V (θ) and, in addition, in the case of (iv), τ(θ). To
solve for the schedules, we used equations (4) and (5) for V (θ) and τ(θ), respectively.
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Table 1. List of schedules compared in numerical simulations.

Schedule Functional form

(i) Constant temperature θ = const

(ii) Constant temperature rate
dθ

dt
= const

(iii) Constant energy rate
dθ

dt
= −ξ

(
dV

dθ

)−1

(iv) Constant thermodynamic speed
dθ

dt
= −

vsθ

τ

(
dV

dθ

)−
1
2

(v) Optimal schedule Equation (11)

Figure 5. Comparison of the performance of schedules (i)–(v). The dashed and
the black solid curves represent, respectively, the energy U (θ(t)) (from equations
(10) and (11)) and the equilibrium energy V (θ(t)) (from equations (4) and (11))
for schedule (v).

All simulations involved self-assembly of 400 particles. The performance of each schedule
was evaluated using the parameter:

η =
U − 9

Ṽ − 9
(15)

with Ṽ = V
|θ=θ̃ = −0.38.

Initial positions were obtained by equilibrating the system at θ̃ = 0.5 � θ∗. The
termination time tf = 10 000 was chosen such that it was sufficient for the average value of
η to drop below 0.1 when using schedule (v). To choose the constant operating temperature for
schedule (i), we conducted simulations at three different temperatures θ = {θ0,

1
2(θ0 + θf), θf}.

Here θ0 and θf are, respectively, initial and final temperature of schedule (v) for the chosen
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Figure 6. Evolution of the microstructure for a system of 400 particles.

simulation time. We found θ = θ0 = 0.94θ∗ to produce the best results based on the optimality
condition (7). The initial temperature for the constant rate schedules (ii)–(iv) was θ0 = θ∗. The
final temperature θf = 0.5θ∗ was determined from equation (5) for τ = tf. This represents a
temperature with the characteristic relaxation time comparable to the total simulation time tf.
The proportionality constant ξ in (iii) and the thermodynamic speed vs in (iv) were treated as
parameters whose values were determined by our choice of θ0, θf and tf.

Simulations results are plotted as log η versus t in figure 5. The results lead to several
conclusions. Firstly, schedule (v) outperforms its competitors up to t ≈ 6000, where a crossover
with schedules (i) and (iv) occur. Secondly, the macroscopic prediction (10) agrees well
with the microscopic simulations only up to t = 2500. Thirdly, self-assembly occurs far from
equilibrium, independent of the schedule used. This is evident by comparing V [θ(t)] to all other
histories.

To better understand the discrepancy between the macroscopic and microscopic model
predictions for t > 2500 we show the evolving microstructure in figure 6. Up to t = 2500,
microstructural changes are primarily associated with the elimination of internal defects by
particle rearrangements along internal boundaries. By t = 2500 (third insert), most of the
internal defects have been eliminated and the particles have been assembled into one ordered
cluster (or a few ordered clusters, in some cases). The subsequent transformation of this
structure to that of a perfectly ordered one likely involves a different relaxation mechanism.
The existence of (at least) two distinct relaxation mechanisms has been previously noted in
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supercooled liquids and glasses as well as ionic crystals [15]. This helps explain why the
constant thermodynamic speed schedule (iv) is able to overcome schedule (v) in figure 5, if
it is able to better capture slower relaxation mechanisms at longer times.

It has been previously demonstrated that constant thermodynamic speed schedules are
optimal with respect to thermodynamic efficiency, which, in general, is not equivalent to
maximum power production [16, 17]. This is confirmed by the fact that schedule (v) performs
better than (iv) up to t = 6000. This allows us to conjecture that the true optimal schedule can
be derived in the framework of optimal control theory but must be adaptive with respect to the
change of the rate-controlling mechanism. Another interesting observation from figure 6 is that
for the case of macroscopically small systems such as those considered in this paper, capturing
one of the relaxation mechanisms is almost sufficient to drive the system into the perfectly
ordered state.

In summary, we proposed a simple macroscopic model that provides a useful description
of self-assembly in systems considered by Grzybowski et al [5]. Based on the proposed model,
an optimal annealing schedule is derived in an analytical form using classical optimization
methods. The model predictions agree well with results of microscopic simulations under
conditions when the model captures correctly the rate-controlling mechanism. Furthermore,
in this regime, the optimal schedule outperforms commonly used simulated annealing
schedules.
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