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A comparison of chain-of-states based methods for finding minimum energy pathways �MEPs� is
presented. In each method, a set of images along an initial pathway between two local minima is
relaxed to find a MEP. We compare the nudged elastic band �NEB�, doubly nudged elastic band,
string, and simplified string methods, each with a set of commonly used optimizers. Our results
show that the NEB and string methods are essentially equivalent and the most efficient methods for
finding MEPs when coupled with a suitable optimizer. The most efficient optimizer was found to be
a form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno method in which the approximate
inverse Hessian is constructed globally for all images along the path. The use of a climbing-image
allows for finding the saddle point while representing the MEP with as few images as possible. If
a highly accurate MEP is desired, it is found to be more efficient to descend from the saddle to the
minima than to use a chain-of-states method with many images. Our results are based on a pairwise
Morse potential to model rearrangements of a heptamer island on Pt�111�, and plane-wave based
density functional theory to model a rollover diffusion mechanism of a Pd tetramer on MgO�100�
and dissociative adsorption and diffusion of oxygen on Au�111�. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2841941�

I. INTRODUCTION

Computational methods for calculating minimum energy
paths �MEPs� are widely used in the fields of theoretical
chemistry, physics, and materials science. The MEP de-
scribes the mechanism of reaction, and in thermal systems,
the energy barrier along the path can be used to calculate the
reaction rate.

Here, we compare several approaches for finding MEPs.
We have restricted our investigation to methods in which the
initial and final states are known. Our goal is then to find the
MEP between these states to a specified accuracy with the
smallest amount of computational effort.

This paper is structured in the following way. In Sec. II,
the nudged elastic band �NEB� method1–3 is summarized. In
Sec. III, we state our objectives and convergence criteria for
finding MEPs. In Sec. IV, we describe the optimizers that we
use to converge the NEB. Convergence results are presented
in Sec. V for a model system of island rearrangement on a
�111� surface using a pairwise Morse potential.

Using the NEB as a baseline, recently developed meth-
ods are compared in subsequent sections. These include the
doubly nudged elastic band �DNEB� �Ref. 4� �Sec. VI�, the
string5 �Sec. VII�, and the simplified string6 �Sec. VIII� meth-
ods.

Finally, we reproduce our NEB optimizer tests for three
different surface reactions modeled with density functional
theory: in Sec. IX A, Pd4 diffusion on MgO�100�, and in Sec.
IX B, O2 dissociative adsorption and O diffusion on Au�111�.

II. NUDGED ELASTIC BAND METHOD

The NEB is a method to find a MEP between a pair of
stable states.1 In the context of reaction rates, this pair has an
initial and a final state, both of which are local minima on the
potential energy surface. The MEP has the property that any
point on the path is at an energy minimum in all directions
perpendicular to the path. This path passes through at least
one first-order saddle point. The MEP can also be described
as the union of steepest descent paths from the saddle
point�s� to the minima.

The NEB is a chain-of-states method7,8 in which a string
of images �geometric configurations of the system� is used to
describe a reaction pathway. These configurations are con-
nected by spring forces to ensure equal spacing along the
reaction path. Upon convergence of the NEB to the MEP, the
images describe the reaction mechanism, up to the resolution
of the images �see Fig. 1�.

A NEB calculation is started from an initial pathway
connecting initial and final states. Typically, a linear initial
path is sufficient, but in some cases, a different choice is
better. For example, if atoms get close to each other along
the linear path, a geometric repulsive force can be used to
push these atoms apart, resulting in a band with lower initial
forces. An interpolation in internal coordinates can also yield
a more suitable initial pathway,9 for example, if the reaction
involves rotational motion. When the reaction is known to go
through an intermediate state, an initial path can be con-
structed from segments through the intermediate.

The images along the NEB are relaxed to the MEP
through a force projection scheme in which potential forces
act perpendicular to the band, and spring forces act along the
band. To make these projections, the tangent along the path �̂a�Electronic mail: henkelman@mail.utexas.edu.
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is defined as the unit vector to the higher energy neighboring
image.2 A linear interpolation between the vectors to neigh-
boring images is used at extrema so that the direction of �̂
does not change abruptly. This upwinding tangent improves
the stability of the NEB and avoids the development of arti-
ficial kinks in high force regions along the path.2 The NEB
force on image i contains two independent components,

Fi
NEB = Fi

� + Fi
S� , �1�

where Fi
� is the component of the force due to the potential

perpendicular to the band,

Fi
� = − ��Ri� + ��Ri� · �̂i�̂i, �2�

and Fi
S� is the spring force parallel to the band,

Fi
S� = k��Ri+1 − Ri� − �Ri − Ri−1���̂i. �3�

In this final expression, Ri is the position of the ith image
and k is the spring constant.

The saddle point is particularly important for character-
izing the transition state within harmonic transition state
theory �TST�. The difference between the saddle point en-
ergy and that of the initial state determines the exponential
term in the Arrhenius rate, and the MEP can be obtained by
minimizing from the saddle point�s�. An efficient strategy for
finding a saddle between known states is to roughly optimize
a NEB calculation and then do a ‘min-mode’ following
saddle point search10,11 from the highest energy image to find
the transition state.2,4 Another approach, which avoids hav-
ing to run two separate optimizations or interpolate to find
the saddle, is the climbing-image NEB �CI-NEB�.3 In this
method, the highest energy image l feels no spring forces and
climbs to the saddle via a reflection in the force along the
tangent,

Fl
CI = Fl − 2Fl · �̂l�̂l. �4�

Once the saddle is found, the normal mode frequencies can
be calculated to ensure that the saddle is first order and to
find the prefactor of the reaction.

III. CONVERGENCE OBJECTIVES

The methods tested here are evaluated using the follow-
ing optimization objectives and convergence criteria. Our
principal goal is to compare methods as they are used by
researchers who do calculations of reaction pathways in
chemistry and materials science. Most of these methods have
parameters that can be tuned to optimize performance. Our
approach is to determine a set of near-optimal parameters
which can be used for all tests, rather than reoptimize the
parameters for each calculation. This strategy reflects the
way computational methods are normally used; there is little
advantage to a method that requires significant additional
calculations for parameter tuning.

Our objective is to find minimum energy pathways be-
tween stationary states. Specifically, how this objective is
defined, however, can lead to different conclusions about
which methods are efficient. Thus, we need to clarify exactly
what we are interested in calculating and emphasize that our
tests reflect the bias of chemistry and material science, in
which MEPs are calculated to find both the mechanism and
activation energy of reactions.

Generally, a researcher wants to understand the mecha-
nism �the geometric pathway� of reaction qualitatively and
the activation energy with higher accuracy. By a qualitative
reaction pathway, we mean that intermediate minima along
the pathway should be identified by the MEP search. By an
accurate activation energy, we mean that, in principle, the
saddle point energy could be found to arbitrary accuracy on a
given potential energy surface, but in practice, it should be
known well enough to give an accurate harmonic TST rate.
In these tests, a climbing-image approach is used so that one
image along the band is converged to the saddle point to a
specified precision.3

In this study, we investigate single step reaction mecha-
nisms where eight or fewer images can be used to resolve the
MEP. The number of images was kept fixed in our tests, even
though fewer images could be used to resolve the MEP and
find the saddle point at lower computational cost. Using the
same philosophy as applied to optimizer parameters, we
want to use a conservative number of images that would
identify intermediate minima between nearby initial and final
states. The limited resolution along the path will result in
some deviation between the images and the true MEP. This is
not a disadvantage because it does not change the reaction
mechanism qualitatively. To find the MEP to arbitrary accu-
racy, a steepest descent path can be traced from the saddle
point�s� to the minima along the path �see Sec. VIII�.

IV. OPTIMIZATION METHODS

The NEB method uses force projections �see Eq. �1�� to
find the MEP. Optimization routines are responsible for mov-
ing the NEB along these forces to the MEP. The force pro-

FIG. 1. Two components make up the nudged elastic band force FNEB: the
spring force Fi

S�, along the tangent �̂i, and the perpendicular force due to the
potential Fi

�. The unprojected force do to the potential Fi is also shown for
completeness.
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jections place a limitation on the optimization methods used
since the NEB forces �FNEB� are not conservative. Optimiz-
ers used with the NEB should not rely on the forces being
consistent with an object function; rather, they should follow
FNEB until its magnitude drops below a specified criteria.
Here, we consider five force-based optimizers: steepest de-
scents �SD�, ‘quick-min’ �QM�,1 fast inertial relaxation en-
gine �FIRE�,12 conjugate gradients �CG�,13,14 and limited-
memory Broyden-Fletcher-Goldfarb-Shanno �L-BFGS�.15

All of the optimizers were constrained with a maximum
allowed step size for each NEB image. A value of 0.2 Å was
chosen to prevent wild steps in high force regions while not
significantly limiting performance in well-behaved low force
regions. This parameter could, in principle, be thought of as
an adjustable parameter and even used to control an unstable
optimizer, but we did not find this to be a good strategy. For
stable optimizers, performance was insensitive to the maxi-
mum step size, and for an unstable optimizer, controlling it
with the maximum step size would result in an inefficient
method resembling steepest descents. For this reason, we left
the maximum step size fixed for all tests.

A. Steepest descents

The SD method follows the force vector from an initial
configuration to a zero in the force. Given a configuration R j

at iteration j, the SD step moves to a new configuration

R j+1 = R j + �F j , �5�

where F j is the force and � is an adjustable parameter. If � is
chosen to be the inverse of the curvature along the step di-
rection, the optimizer will step directly to the minimum
along the F j direction. To ensure stability of the method, �
should be less than 1 /kmax, where kmax is the maximum cur-
vature in the system. The SD method is known to converge
slowly in stiff systems.14 Here, it is presented as the simplest
optimizer to which better methods can be compared.

B. Quick-min

The QM optimizer improves upon the SD method by
accelerating the system in the direction of the force, making
the minimization more aggressive.1 QM is a damped dynam-
ics routine, where the damping parameter is replaced by a
projection of the velocity along the force. The QM method
can be coupled with a velocity Verlet algorithm,16 or as de-
scribed here, with an Euler integrator.

�1� Project the velocity in the direction of the force,

V j = �V j · F̂ j�F̂ j .

�2� Zero the velocity if it is antiparallel to the force,

if V j · F̂ j � 0 then V j = 0.

�3� Take an Euler step,

R j+1 = R j + �tV j ,

V j+1 = V j + �tF j .

C. Fast inertial relaxation engine

Like QM, the FIRE algorithm takes dynamical steps and
resets the velocity if the force and velocity are in opposite
directions. In addition, FIRE employs a variable time step
algorithm. The main difference is that QM projects the ve-
locity onto the force vector, whereas FIRE only projects a
component of the velocity in the force direction, while main-
taining momentum in other directions. Details of this method
can be found in Ref. 12.

D. Conjugate gradients

The CG method improves upon the SD method by fol-
lowing conjugate search directions instead of always follow-
ing the force. The algorithm employed is the Polak-Ribière
formula.13,14

�1� Initialize the search direction along the force,

d0 = F0.

�2� Calculate the step size � using a line minimizer,

R j+1 = R j + �d j .

�3� Evaluate the new conjugate search direction,

d j+1 = F j+1 + �d j ,

where �=F j+1 · �F j+1−F j� / �F j�2. In our implementation, a
single Newton’s method step was used to minimize the force
along the search direction di at each iteration. The derivative
of the force along the search direction was evaluated with a
finite difference step so that each CG iteration requires two
force evaluations.

E. Limited-memory
Broyden-Fletcher-Goldfarb-Shanno

The L-BFGS method is a quasi-Newton method that
builds up information about the second derivatives during
optimization and uses this information to step toward the
predicted harmonic minimum.14,15 Specifically, the inverse
Hessian matrix H−1 is constructed iteratively, starting from a
diagonal matrix. The L-BFGS method can be used in two
ways. First, similar to CG, a search direction,

d j = F jH j
−1, �6�

is identified at each iteration, and a line minimizer is used to
step along that direction,

R j+1 = R j + �d j . �7�

This method is referred to as L-BFGS�line�.
A second approach is to use H−1 directly to calculate the

step,

R j+1 = R j + F jH j
−1. �8�

This method, which we call L-BFGS�Hess�, requires only
one force call per iteration �instead of two for L-BFGS�line��
because there is no finite difference step to calculate �. How-
ever, L-BFGS�Hess� requires a more conservative value for
the diagonal elements of the initial inverse Hessian. Values
that are too large result in oscillatory or wild behavior, and
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values that are too small lead to slow optimization. Both
flavors of the L-BFGS algorithm are tested here.

The L-BFGS method uses a memory of previous itera-
tions to build the inverse Hessian. The number of iterations
in the memory is a variable parameter. In all cases, we have
used a value of 25 and found negligible changes in perfor-
mance as long as this value is set large enough �greater than
10�; however, a larger value for the memory stabilizes the
optimizer for a poor initial H−1.

F. Global L-BFGS

We also tested a global version of L-BFGS �GL-BFGS�
in which all images along the band are minimized with a
single instance of the optimizer, instead of having an opti-
mizer for each image.4,17,18 In both the local and global
L-BFGS methods, the images are optimized collectively, but
in the GL-BFGS method, the interimage interactions are in-
cluded in the inverse Hessian. The dimensionality of this
matrix is 3�N� P in GL-BFGS, where 3 is the dimension-
ality of space, N is the number of atoms, and P is the number
of images along the band. In the local �image-by-image�
L-BFGS method, there are P matrices, each with dimension
of 3�N. In the GL-BFGS method, the configuration of the
band and the force acting on it are described by the vectors,

R = �R1,R2, . . . ,RP� ,

�9�
F = �F1,F2, . . . ,FP� .

The optimizer then works the same as the L-BFGS using H−1

�for the entire band� to either directly calculate the optimiza-
tion step in GL-BFGS�Hess� or with a line minimizer to
calculate the step size ��� in GL-BFGS�line�.

V. NEB CONVERGENCE

The convergence of the NEB with the different optimiz-
ers was tested using a model system �see Ref. 19 for details�
of the rearrangement mechanisms of a heptamer island dif-
fusion on a fcc�111� crystal surface. The surface was formed
from six layers of a fcc crystal, with 56 atoms per layer and
the three bottom layers held frozen in their equilibrium bulk
positions. A seven atom heptagonal island was placed on the
surface with each atom in hollow sites. Atomic interactions
were described by a pairwise Morse potential,

V�r� = De�e−2��r−r0� − e−��r−r0�� , �10�

with parameters fit to Pt,20 De=0.7102 eV, �=1.6047 Å−1,
and r0=2.8970 Å. The potential was cut and shifted to zero
at a distance of r=9.5 Å.

Figure 2 shows the most stable initial state for the island
and the thirteen product states with the lowest diffusion bar-
riers. The NEB optimizers were tested by forming a linear
band from the initial state to each final state and then count-
ing the number of potential evaluations �force calls� required
to reach convergence. Convergence was reached when the
magnitude of the force on all images was less than a speci-
fied maximum force Fmax, so that

�Fi
NEB · Fi

NEB�1/2 � Fmax �11�

for each image i.
A comparison of the efficiency of the different optimiz-

ers with an eight image CI-NEB is presented in Table I. The
average numbers of force calls per image to reach force cri-
teria, Fmax, of 0.01 and 0.001 eV /Å for the 13 processes
illustrated in Fig. 2 are tabulated. Of the first-order methods
�SD, QM, and FIRE�, which do not explicitly calculate cur-
vatures of the potential, SD is the least efficient. QM is bet-
ter, but the recent modifications made in the FIRE algorithm
result in a significantly more efficient algorithm for this sys-
tem. The second order methods that use line optimizers �CG,
L-BFGS�line�, and GL-BFGS�line�� are slightly less efficient
than FIRE. They require fewer iterations to converge, but
because each iteration involves two force evaluations to
evaluate the curvature along a line by finite difference, the
overall efficiency is lower. The Hessian based second order
L-BFGS�Hess� has the potential to be twice as fast as the line
optimizer version, L-BFGS�line�, but it is unstable when
used with the NEB. The global version, GL-BFGS�Hess�, is
stable and is half the cost of the GL-BFGS�line� method.
This algorithm is 35% faster than FIRE and the most effi-
cient algorithm that we have tested for optimizing the NEB.

The instability of second order algorithms when used
with the NEB has been noted previously,21,22 and associated

FIG. 2. Low energy rearrangement processes for a heptamer island on a
�111� surface. A pairwise Morse potential is used with parameters adjusted
to model Pt.

TABLE I. Average number of force calls to converge an eight image CI-
NEB for heptamer island rearrangement with different optimizers. The NEB
was considered converged when the magnitude of the force on each image
dropped below the specified maximum force, satisfying: max�Fi

NEB��Fmax.

Optimization method

Force calls to reach
Fmax �eV/Å� of

0.01 0.001

SD: steepest descent 412 737
QM: quick-min 190 354
FIRE: fast inertial relaxation engine 77 116
CG: conjugate gradient 111 196
L-BFGS�line� 108 154
L-BFGS�Hess� 351 428
GL-BFGS�line�: global L-BFGS�line� 100 147
GL-BFGS�Hess�: global L-BFGS�Hess� 49 73
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with the NEB lacking a simple Lagrangian �or object func-
tion�. The FNEB forces are constructed with projections �see
Eq. �1��, resulting in nonconservative forces and a non-
Hermitian Hessian matrix.22 In this respect, optimizers that
rely on curvature information could be inefficient or unstable
when used with the NEB, but it is not well understood why
some optimizers have stability problems and others do not.

To better understand the interaction of the optimizers
and the NEB, we compared the performance of each for
NEB optimization with geometry minimization. Minimiza-
tion is based on conservative forces, so problems due to the
nonconservative NEB forces should show up in the compari-
son. To make the minimization and NEB calculations as
similar as possible, we minimized a geometry from the mid-
point of each heptamer rearrangement process �see Fig. 2�
and compared the average number of force calls required to
reach Fmax=0.01 eV /Å, with the number of force calls �per
image� required to converge the NEB with the same force
criteria.

Figure 3 shows that the optimizer performance is very
similar for the NEB and minimization calculations, with the
notable exception of the L-BFGS�Hess� optimizer. This op-
timizer works well for a single image but is unstable when
used with the NEB. There is, however, a simple solution in
the GL-BFGS�Hess� optimizer. The use of a global inverse
Hessian for the entire NEB, in which interimage interactions
are included, stabilizes the method and results in our most
efficient optimizer.

The improved efficiency of GL-BFGS over the L-BFGS
optimizer can be understood by looking at the Hessian ma-
trices that each method constructs and comparing them to
Newton’s method which uses the true Hessian of the system.
To make this comparison, we use a simple system in which
eight colinear images are connected by springs of strength
k=5 eV /Å2. The exact global Hessian for this system,
shown in Fig. 4, has values of 2k on the diagonal and −k on

the off-diagonal elements. This is a harmonic system, so this
exact Hessian is independent of geometry, and Newton’s
method converges in a single iteration. Newton’s method can
also be applied locally �image by image�. Here, the Hessian
for each image is the single value of 2k, and the local New-
ton’s method step is made by using a global Hessian solely
with this value on the diagonal. Since this is not the exact
Hessian for the full system, Newton’s method takes longer
�48 iterations� to converge.

The same comparison is made for L-BFGS and GL-
BFGS. The L-BFGS is a local method �image by image�, so
it learns only the diagonal elements of the Hessian. It takes
several iterations to learn this Hessian and converges in 69
iterations—similar to the local implementation of Newton’s
method. The GL-BFGS optimizer is able to approximate the
global Hessian, which is nearly identical to the exact Hessian
by the time it converges in eight iterations �see Fig. 4�. The
off-diagonal elements of the Hessian are important for the
global optimization of the band, and when they are included,
the optimizer is significantly more efficient.

Beads on a line connected by springs is a simplified
problem because the force projections of a NEB in higher
dimensions are not present. Figure 5 shows a comparison of
the final global Hessian for an eight image NEB on the two-
dimensional London-Eyring-Polanyi-Sato �LEPS� potential
coupled to a harmonic oscillator1 �see Fig. 9�. The true Hes-
sian, calculated at the converged NEB, is not Hermitian since
the forces are not conservative. One can see, however, the
strong curvatures due to the potential on the block diagonal.
The spring and tangent interactions between images appear
in the off-diagonal blocks. The climbing image can be seen
as the fifth image. Here, there are no off-diagonal elements
since displacements of the neighboring images do not induce
forces on the climbing image. This is why the climbing im-
age tends to converge faster than other images when local
optimizers are used. The GL-BFGS optimizer is forced to
build up a symmetric Hessian. The �large� diagonal elements
are similar to the true Hessian, and interimage interactions
are present, but the final Hessian differs significantly from

FIG. 3. Optimizer performance with the NEB as compared to minimization.
Points on the line indicate that it takes the same average number of force
calls to minimize from the midpoint of each heptamer rearrangement pro-
cess as it does for an image in the NEB to converge to the MEP �with
Fmax=0.01 eV /Å�. In general, the optimizers have a similar performance
with the NEB as with minimization, and the second order methods �CG and
L-BFGS� are better than the commonly used QM algorithm. The FIRE
algorithm is also a significant improvement over QM. The Hessian based
L-BFGS is twice as fast as the line-optimizer version but only when opti-
mization is done globally for the NEB.

FIG. 4. �Color� Number of iterations required to converge a string of images
connected by springs on a line. The L-BFGS and GL-BFGS optimizers are
compared to Newton’s method, using Hessian matrices from both a local
�image-by-image� and global �entire band�. In this harmonic system, New-
ton’s method with the global Hessian converges in one iteration, and GL-
BFGS learns the full Hessian and converges in eight iterations. When these
optimizers are restricted to local �diagonal� Hessian matricies, both are in-
efficient. This indicates that the GL-BFGS optimizer is more efficient than
the L-BFGS method because it learns information about the interimage �off-
diagonal� elements of the Hessian.

134106-5 Optimization methods for minimum energy paths J. Chem. Phys. 128, 134106 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



the finite difference Hessian. Clearly these interimage ele-
ments are important, since GL-BFGS converges the NEB 2.5
times faster than the L-BFGS optimizer, but the qualitative
error in the GL-BFGS Hessian suggests that the method
could be further improved.

Finally, it should be noted that the line-optimizer based
methods �CG and L-BFGS�line�� do not suffer from the same
instability seen in L-BFGS�Hess�. In these methods, the line
is chosen based on local information, but the curvature along
the line is found by finite difference—globally for the entire
NEB. This curvature is more accurate than predicted by the
local �image-by-image� L-BFGS Hessian and results in
stable methods, although at roughly twice the cost of GL-
BFGS�Hess�.

The fact that the stability of the L-BFGS optimizer is
sensitive to how it is implemented could explain the conflict-
ing reports about whether the method is unstable21,22 or
not4,18 when used with the NEB and string methods. This
later work, from the Wales group, used a global version of
the L-BFGS method as implemented in their OPTIM code17

and found it to be highly efficient for NEB calculations—
which is consistent with what we find here.

VI. DOUBLY NUDGED ELASTIC BAND

The NEB force projection restricts the potential forces to
act perpendicular to the band, and spring forces along the
band. Since these forces are orthogonal, there is no compe-
tition between the potential forces pointing images to the
MEP and the spring forces keeping them equally spaced.
Also, since the spring forces act only along the band, there is
no tendency for the springs to shorten the band; the spring
forces on each image go to zero when they are equally
spaced.

Trygubenko and Wales4 proposed a double nudging
modification to this projection scheme in which a component
of the spring force acts perpendicular to the path. This com-
ponent acts to straighten the band, keeping it shorter during
convergence. Double nudging is very similar in spirit to the
angular switching function introduced in the original NEB
method1 which was made unnecessary with an upwinding
tangent.2 The strength of the double nudging method is that it
uses only the component of the perpendicular spring force
which is not along the potential force, so that it does not
cause corner cutting.1 Figure 6 illustrates this projection and
the resulting double nudging force Fi

DNEB, which is added to
the ith image in the NEB.

To write the double nudging force explicitly, we take the
component of the spring force,

Fi
S = k��Ri+1 − Ri� − �Ri − Ri−1�� , �12�

which is perpendicular to the tangent �̂i,

Fi
S� = Fi

S − Fi
S · �̂i�̂i. �13�

Figure 6�a� illustrates the perpendicular and parallel compo-
nents of the spring force, and Fig. 6�b� shows the plane nor-
mal to the tangent �̂i at image i. The perpendicular potential
force Fi

� and the perpendicular spring force Fi
S� are both in

this plane. The double nudging force Fi
DNEB is the component

of Fi
S� which is orthogonal to Fi

�,

Fi
DNEB = Fi

S� − Fi
S� · F̂i

�F̂i
�. �14�

The addition of this force to all �nonclimbing� images of the
NEB is the DNEB.4

Trygubenko and Wales report that the addition of the
double nudging force improves the stability of convergence
with the NEB when using the L-BFGS optimizer.4 They also
mention that the DNEB cannot be used to accurately con-
verge the MEP. The convergence problems are caused be-
cause the perpendicular spring force Fi

S� does not go to zero
for a curved path and is only projected out if it is parallel to
the potential force Fi

�. Upon convergence, this perpendicular
component of the potential force Fi

� goes to zero, so it will
not project out the double nudging force, and the band will
feel a straightening force. This frustration is illustrated in
Fig. 7. The DNEB method can only converge the NEB to
0.2 eV /Å before it gets knocked away from MEP by the
double nudging force.

The DNEB method was shown to work well when ap-
plied to long pathways with high initial forces,4,18 which is
not the conditions under which are testing it. To improve the
convergence of the DNEB at lower forces, we introduced a

FIG. 5. �Color� The exact �finite difference� Hessian for an eight image
converged NEB on the two-dimensional LEPS potential coupled to a har-
monic oscillator, compared with the approximate Hessian constructed dur-
ing a GL-BFGS optimization. The exact Hessian shows the curvatures due
to the potential on the block-diagonal elements and the interimage spring
and tangent interactions on the off diagonal. The non-Hermitian nature of
the NEB forces is apparent from the asymmetry in this matrix. The approxi-
mate GL-BFGS Hessian is necessarily symmetric, and only picks up some
of the tridiagonal nature of the exact Hessian. These off-diagonal elements
are quite important however; GL-BFGS converges 2.5 times faster than
L-BFGS which only has the block-diagonal elements.

FIG. 6. The doubly nudged elastic band includes an additional force, Fi
DNEB,

to keep the band straight during convergence. This force is a component of
the perpendicular spring force Fi

S�, as shown in �A�. The view in �B� is in
the plane perpendicular to the band. Here, Fi

DNEB is shown as the component
of Fi

S� which is orthogonal to the perpendicular force due to the potential
Fi

�.
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switching function which turns off Fi
DNEB as the NEB con-

verges and the magnitude of Fi
� drops below that of the

spring force Fi
S�,

Fi
swDNEB =

2

�
tan−1� �Fi

��2

�Fi
S��2�Fi

DNEB. �15�

Figure 7 shows the improved stability of this switched
DNEB method �swDNEB� but also that it does not improve
convergence over the regular NEB. It would be interesting to
see if this method improves the stability of NEB calculations
with high forces and also allows for accurate convergence,
but such a test is beyond the scope of this work.

VII. STRING METHOD

The idea behind the string method is that a continuous
reaction pathway �string� is optimized to the MEP.5 Practi-
cally, however, the string method is very similar to the NEB
in that the pathway is represented by a set of images con-
nected by linear segments. The same tangent and force pro-
jections in the NEB �Ref. 2� are used to direct the images
along the string to the MEP. A climbing image3 can also be
used to find the saddle point precisely. The one difference
between the string and NEB methods is how the images are
kept equally spaced along the pathway �or by some other
specified distribution�. In the NEB method, spring forces are
introduced between images along the band, and the optimizer
ensures equal spacing by minimizing these forces. In the
string method, no spring forces are used. Instead, the images
are kept equally spaced by repositioning them equally along
the path after each iteration. Since the path is defined by the
images, the repositioning step gives equal spacing to first
order. Despite these different approaches for distributing im-
ages along the path, we find that there is no significant dif-
ference in the final path or the rate at which the methods
converge. Figure 8 shows that it takes the same amount of
work to converge the string and NEB methods with each
optimizer. Either the NEB springs or the string redistribution
can be used with the optimizers to efficiently find the MEP.
These results are consistent with another recent study finding

that the NEB and string methods have similar performance
when calculating isomerization pathways in small clusters
and for folding pathways in peptides.23 What is important for
these methods is the definition of the tangent along the path,
the force projections, and the climbing-image method for
finding the saddle point.

VIII. SIMPLIFIED STRING METHOD

Recently, E et al. proposed a simplified version of the
string method.6 This method is described as being simpler
than the NEB and string methods because it does not require
a definition of the tangent along the path or the use of force
projections. Instead, a cubic spline is used to parametrize the
pathway between images. At each iteration, images are
moved down the force and then redistributed along the
spline. Convergence is based on how far the images move
after each full iteration.

We have done two tests to compare the NEB and the
simplified string method. First, we compare the accuracy of
the methods, by calculating the root-mean-squared �rms� dis-
tance between the images on the converged bands and the
true MEP. For this test, we used a LEPS potential coupled to
a harmonic oscillator to form a two-dimensional potential
energy surface.1 Figure 9 shows this rms distance as a func-
tion of the number of images used in each method. We find
two separate regimes; with more than 25 images, the string
method more accurately reproduces the MEP, and with
fewer, the string becomes unstable and the NEB is more
accurate. The insets illustrate what is happening in these two
regimes. Inset �B� shows how the string method follows the
true MEP more closely than the NEB at a high-curvature
region of the path. This is consistent with the findings of E et
al. that the simplified string reproduces the MEP to a higher
order than the NEB and will follow it more closely in the
limit of many images.6 In the 10–25 image range, the sim-
plified string is poorly behaved and converged to a path that
oscillates around the MEP �see inset �A��. With fewer than
10 images, the simplified string oscillates without converg-
ing. We attribute this instability to the fact that the simplified

FIG. 7. �Color� Convergence of the NEB and DNEB with different optimiz-
ers, for the Pt island rearrangement process illustrated in Fig. 2�c�. The
DNEB has an instability at low force which prevents convergence. When the
DNEB force is smoothly switched off during convergence �swDNEB�, the
performance is similar to the NEB. This plot also shows how the FIRE and
GL-BFGS optimizers converge at a faster rate than QM.

FIG. 8. Number of force calls required to converge the string and NEB
methods to a force criteria of 0.01 eV /Å with different optimizers. The
linear trend shows that the performance of the NEB and string methods
�using the NEB upwinding tangent� are the same, and that GL-BFGS is the
most efficient optimizer.
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string does not use an upwinding tangent. Tests �not pre-
sented here� show that the simplified string becomes unstable
at the same point that a central-difference tangent becomes
unstable, so we believe that the instability has the same root
cause that is described in Ref. 2.

Using the rms distance to the MEP as a measure of ac-
curacy illustrates a strength of the higher-order interpolation
used in the simplified string method as compared to the NEB
when the path is represented by many images. As discussed
in Sec. III, however, this is not typically important for cal-
culations of chemical rates. Taking Fig. 9�b� as an
example—as long as both the simplified string and NEB in-
clude a climbing image to find the saddle, they describe the
rate and mechanism of reaction equally well. Furthermore,
once the saddle point is found, it is a simple calculation to
descend from the saddle along the MEP.

The computational cost of calculating a MEP to arbitrary
accuracy with the simplified string and NEB was compared
for the Pt�111� island rearrangement process shown in Fig.
2�c�. The accuracy of both methods is limited by the number
of images used, so we performed tests with increasing num-
bers of images �5, 15, and 25� to compare the methods. The
GL-BFGS optimizer was used for the NEB calculations and
the fourth order Runga-Kutta �RK4� integrator with an opti-
mized time step for the simplified string. RK4 is the sug-
gested method for moving images down the force in the
simplified string method;6 the other optimizers discussed in
this paper either cannot be used since the forces do not go to
zero upon convergence, or they are not as efficient as RK4.

Figure 10 shows how the accuracy of the NEB and sim-
plified string methods compare. The blue �NEB� and red
�simplified string� curves labeled with the number 5 both
have five images. The curve shows the accuracy of the im-
ages as they converge. Eventually, both curves plateau as the
methods reach an intrinsic error due to the finite resolution of
the bands. The higher accuracy of the simplified string can
be seen by the smaller plateau value but also that it is

reached only after many more force calls. As more images
are used, both methods become more accurate with an in-
creasing cost. The dashed lines indicate the order of the
methods—the NEB is of lower order since it uses a single
sided tangent approximation, as compared to the cubic spline
in the simplified string method; so eventually, it is more ef-
ficient to use the simplified string method. This is consistent
with the findings of E et al.6

There is, however, a more efficient approach to find
highly accurate MEPs. Once the saddle point�s� is found, the
MEP can be followed by descending from the saddle�s� to
the minima. The saddle point�s� can be found with arbitrary
accuracy using a climbing-image NEB calculation with a
minimal number of images, or using a min-mode following
method.10,11,24 Here, we used a five-image CI-NEB to find
the saddle and then the dimer method to find the lowest
mode at the saddle,10 along which a descent trajectory is
started. The cost of finding the saddle and the lowest mode
was 203 force calls.

Several descent methods were used to trace out the MEP.
A relatively inexpensive method, described here as stepwise
descent, finds the next image that is a fixed distance down
the MEP. The force on this next image is minimized using
the quick-min optimizer until the force perpendicular to the
path drops below a specified value. This method was re-
peated for increasingly higher path resolutions �with higher
accuracy and cost� to trace out the orange line labeled “step-
wise descent” in Fig. 10. At a cost of 3�103 force calls, the
stepwise descent method becomes comparable to the steepest
descent method which takes steps down the MEP in propor-
tion to the force. Steepest descent is only stable for � below

FIG. 9. �Color� Accuracy of the simplified string and NEB, measured by
comparing the root-mean-squared �rms� deviation to the true MEP as a
function of the number of images used to represent the path. For more than
25 images, the simplified string with a cubic spline interpolating function is
closer to the MEP than the NEB with a one-sided upwinding tangent �B�.
Between 10 and 25 images, the simplified string develops oscillations and
tends to deviate further from the MEP than the NEB method �A�. With fewer
than 10 images, the simplified string is unstable and does not converge. In
this regime, the NEB remains stable, and is the preferred method.

FIG. 10. �Color� The accuracy of MEP finding methods as a function of
computational cost. The process chosen for this comparison is the Pt island
rearrangement illustrated in Fig. 2�c�. Accuracy is measured as the rms
distance between the images of each method and the true MEP. Cost is
measured by the total number of force evaluations. Two types of approaches
are compared—the NEB and simplified string, chain-of-states methods, and
methods which require finding the saddle first before minimizing down the
MEP via a stepwise, steepest, or RK4 descent trajectory. For calculations
with 25 images or less, the NEB is more efficient than the simplified string.
For accurate calculations with more than 104 force calls, the simplified
string becomes more efficient because it is based on the higher-order �RK4�
optimizer and �cubic spline� interpolation between images. However, this is
not as efficient as first finding the saddle �here with a five-image CI-NEB
calculation� and then descending along the MEP. In this test, one should
switch to a saddle-then-descend approach instead of using a 15 or greater
image NEB.
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0.04 eV /Å2, so the stepwise descent is a good intermediate
solution for tracing out the MEP for this potential. Finally,
for even higher accuracy, the RK4 method is used to trace
out the MEP. Here, a maximum time step of 0.55 fs could be
used. Smaller time steps rapidly increased the accuracy of
the MEP, making this the most efficient method for finding
MEPs with an error smaller than 10−4 Å.

IX. DENSITY FUNCTIONAL THEORY CALCULATIONS

Computational efficiency is particularly important for
finding reaction pathways when atomic interactions are
based on first-principles calculations. The methods compared
here require forces and energies, which are available from
density functional theory �DFT� calculations. Here, we test
our results of Sec. V on two systems with very different
kinds of atomic interactions, described by DFT: the diffusion
of a Pd tetramer on the MgO�100� oxide surface25 and the
dissociative adsorption and diffusion of oxygen on Au�111�.

Our DFT calculations are performed with the Vienna ab
initio simulation package, VASP. Electronic wavefunctions
are described with a plane-wave basis set. Exchange and
correlation are modeled with the PW91 generalized gradient
approximation functional.26 Ultrasoft pseudopotentials of the
Vanderbilt form27 are used to smoothen the wavefunctions
within the core atomic regions, and these wavefunctions are
orthogonalized to a frozen core within the projector aug-
mented wave framework.28 A plane-wave cutoff of 250 eV
was set appropriate for the pseudopotentials. In the MgO
oxide system, a single �-point calculation was sufficient for

sampling the Brillouin zone, and for the Au surface, a 4
�4�1 Monkhorst-Pack mesh29 was used.

A. Pd4 diffusion on MgO„100…

The MgO�100� surface is modeled with three layers,
each with 36 atoms. The bottom two layers are frozen in bulk
lattice sites and the top layer is relaxed to accommodate sur-
face interactions. The diffusion process investigated is a Pd
tetramer rolling over one edge to a mirrored final state �see
Fig. 11�. The optimizers show the same performance trend as
in Sec. 5, with GL-BFGS outperforming the standard QM
algorithm by a factor of 2. It should be noted here, as stated
in Sec. III, that the optimizer parameters were not optimized
specifically for the system; rather, default values were used.
For QM and FIRE, a time step of 0.10 �in 10.18 fs units�,
and for GL-BFGS, the initial diagonal H−1 was scaled to
have an inverse curvature of 0.05 Å2 /eV.

B. O2 dissociation and diffusion on Au„111…

The dissociative adsorption of O2 on Au�111� �Fig. 12�
was calculated to test our results on a system with a strong
covalent bond. The Au�111� surface was modeled as a four
layer slab with nine atoms per layer and the top two layers
relaxed. This reaction is qualitatively different from both the
heptamer Pt island rearrangement and the Pd tetramer roll-
over processes because of large variance in bond strengths.
To converge the NEB with GL-BFGS�Hess�, a reduced
scaled H−1 of 0.01 Å2 /eV was necessary. For stability, this
must be set smaller than the inverse of the stiffest mode. The

TABLE II. Number of force calls required to converge a five-image CI-NEB
for three different reaction mechanisms described by DFT. In each case, our
GL-BFGS�Hess� optimizer outperformed existing methods, although this
was particularly clear for the diffusion processes �I and III�. Breaking of the
stiff O–O bond in process II requires a conservative initial Hessian for the
GL-BFGS method, which limited its convergence rate as compared to the
damped dynamics methods. The NEB was considered converged when the
magnitude of the force on each image dropped below 0.01 eV /Å.

Process QM FIRE GL-BFGS

�I� Pd4 diffusion on MgO�100� 178 148 98
�II� O2 dissociation on Au�111� 187 147 126
�III� O diffusion on Au�111� 59 128 33

FIG. 11. �Color� A Pd4 cluster diffuses by rolling on the MgO�100� surface.
Gray atoms are Pd, red are O, and green are Mg.

FIG. 12. �Color online� Reaction mechanism of O2 dissociative adsorption
on Au�111� into adjacent fcc hollow sites.

FIG. 13. �Color online� Diffusion of O between hollow sites on Au�111�.
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O–O stretch mode is calculated as 48.1 eV /Å2, requiring an
initial scaling of H−1 smaller than 0.02 Å2 /eV.

To verify that the lower GL-BFGS performance �only
15% faster than FIRE� is due to the stiff O–O mode and
conservative H−1, we choose a second process involving O
diffusion on the Au�111� slab �see Fig. 13�. Here, the highest
curvature is 9.4 eV /Å2, which is small enough to use our
more aggressive H−1 value of 0.05 Å2 /eV. As shown in
Table II, the performance gap between GL-BFGS and QM/
FIRE increases, similar to what we found for the Pd tetramer
and Pt island rearrangement systems.

X. DISCUSSION

In our comparison of different methods, we have chosen
a few test systems, a convergence criteria, and a limited
number of optimizers. By making these choices, there is a
danger of omitting methods, optimizers, or focusing on types
of systems that do not emphasize the strengths and weak-
nesses of different approaches. Some of the methods that
have not been compared here are the adaptive NEB,21 the
superlinear minimization scheme for the NEB,22 the growing
string,30 the quadratic string method,31,32 and a combination
of double and single ended searches.2,4

Direct comparisons between methods is made easier
when tests are made on easy-to-implement benchmark sys-
tems �such as the pairwise Morse potential used here� and
when the code for algorithms is made available. To facilitate
such comparisons in the future, the codes used for the calcu-
lations in this manuscript are available at Ref. 33.

XI. CONCLUSIONS

Our comparison of methods for finding minimum energy
paths shows that when the same force projection and tangent
definition are used, the method by which images are kept
equally spaced �springs in the NEB method or redistribution
with the string method� does not have a significant impact on
computational efficiency; the optimizer is more important.
Here, we show that a global implementation of the L-BFGS
method, in which interimage curvatures are included in the
memory of the optimizer, is the most efficient approach.
Also, we show that the FIRE optimizer tends to be more
efficient than the quick–min and is the preferred optimizer
that does not �explicitly� rely on curvature information. Both
the NEB and string methods can incorporate a climbing im-
age to efficiently find a saddle point while using as few im-
ages as possible to represent the MEP. To find a high accu-
racy MEP, it is more efficient to first find the saddle and then
descend to minima, as compared to using a chain-of-states
method �NEB, string, or simplified string� with many im-
ages. All methods compared are force based and can be used
with DFT calculations. The most efficient methods have been

shown to work well both for empirical pairwise potentials
and for metal-oxide and covalent bond breaking reactions at
surfaces as described by DFT.
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