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a b s t r a c t

We present a model of olefin/paraffin separation via nanocomposite membranes and a corresponding
lattice kinetic Monte Carlo simulation. Our model is based on the solution-diffusion theory of facilitated
transport through microporous membranes and the preferential binding of olefins to silver ions and
nanoparticles. In our model, olefin molecules bind to the randomly distributed traps on a lattice whereas
paraffin molecules do not. Selectivity for olefins over paraffins in the steady state is explained in terms
of lattice diffusion and the equilibrium statistics of adsorbed gases. We show that, to first order, the
maximum selectivity occurs when the rate at which an olefin molecule enters the lattice is the same
as rate at which it leaves a trap site. The maximum selectivity is higher for weaker binding traps than
for strong binding traps. Our model also demonstrates that the maximum selectivity increases with
nanoparticle loading in the membrane and that, when the selectivity is maximized as a function of olefin
binding and applied pressure, the olefin permeability is reduced from the neat membrane by a constant
factor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Every year approximately 150 million tons of light olefins –
ethylene and propylene – are produced in the petrochemical indus-
try at great energetic cost [1]. Approximately 1.4 × 1014 BTUs per
year are invested to separate ethane from ethylene and propane
from propylene [2]. The boiling points of ethylene, 169 K, and
ethane, 184 K [3] are close enough that large cryodistillation frac-
tionating columns are required for efficient separation.

The separation is energy intensive in large part due to the
phase change. The light olefin mixtures are cooled under high
pressure before fractionation. Membrane separation of gases, in
contrast, does not require a phase change. A stable membrane for
olefin/paraffin separation would lead to significant energy savings
and lower costs during industrial production of ethylene and propy-
lene. Designing a robust and highly olefin selective membrane,
however, remains an open problem.

Models of gas separation membranes are commonly based on
the mechanism of separation. Models of gas permeation treat the
membrane as a porous network of polymer chains containing
microcavities of diameters ranging from 5 to 1000 Å. Solution-
diffusion membranes, in which transient gaps appear due to
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thermal motion, stand in contrast to rigid polymers that act as
molecular sieves [5]. In the limit of large microcavities in the pore-
flow model, permeation is a pressure-driven process of gas flow
through small pores in which large molecules are separated from
smaller molecules based on size.

In the limit of small microcavities on the order of 5–10 Å, how-
ever, permeation becomes a diffusive process controlled by the
thermal motion of the constituent membrane polymers [4]. Per-
meation in this limit consists of three distinct steps [6]:

1. Adsorption at the upstream face.
2. Diffusion through the membrane based on thermal motion of

polymer chains.
3. Desorption from the downstream face.

Step 2 has been modeled using molecular dynamic (MD) simula-
tions of gas molecules in membrane cavities [7–10]. Particles move
from cavity to cavity based on the thermal fluctuations of mem-
brane polymers. Lim and Tsotsis [11] performed MD simulations of
CO2 and CH4 permeation in polyetherimide matrices and observed
that molecular displacement over time from initial positions are
marked by small displacements within a microcavity punctuated
with much larger rapid displacements corresponding to a hop to
a nearby microcavity. The ability to hop between cavities is con-
trolled by thermal motion that opens temporary channels between
cavities and results in diffusion-controlled permeation.

The overall diffusion constant for a gas molecule in a spe-
cific membrane, as predicted by the solution-diffusion model, is
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a function of temperature and its own cross-sectional area. Smaller
molecules pass more easily through thermally opened channels
between microcavities. In the olefin/paraffin separation problem,
olefins have a smaller cross sectional area than the corresponding
paraffin. Experimental results, as predicted, demonstrate that neat
organic membranes commonly have a large selectivity for olefins
over the corresponding paraffin [3,12,13].

There is a tradeoff, however, between permeability and selec-
tivity. Burns and Koros [14] report an experimentally observed
upper bound to propylene/propane selectivity as a function of
propylene permeability. The greatest selectivity is observed at
low propylene permeability, whereas selectivity falls to unity at
very high propylene permeabilities. An industrially desirable mem-
brane, in contrast, maximizes both permeability and selectivity in
order to achieve efficient selectivity in the shortest amount of time
and the least amount of membrane. Facilitated transport mem-
branes have been demonstrated to increase both selectivity and
permeability and offer strong promise for industrial separations
[15].

Membranes containing ionic silver complexed with a counte-
rion, such as BF4

−, and supported in an organic polymer scaffold
have been demonstrated to have a high selectivity for olefins
over paraffins in the equilibrium gas flux [16–20]. The silver ions
selectively bind to olefins through a d–�* complexation that is
unavailable to paraffins, which contain only � bonds in the carbon
backbone [15]. The silver–olefin complex is particularly unstable
upon exposure to air, however, which is undesirable for industrial
applications [21].

Membranes that replace ionic silver with silver nanoparti-
cles provide an appealing alternative for olefin/paraffin separation
[22–24]. Membranes containing silver nanoparticles have been
demonstrated to be much more stable for olefin/paraffin separation
over time [25].

Methods such as laser ablation of microparticles (LAM) are
capable of producing small, relatively monodisperse nanoparti-
cles without surfactants [26,27]. LAM may be used to generate
core/shell nanoparticles of metal/metal as well as metal/metal
oxide [28,29]. Core/shell nanoparticles are of particular interest
due to their tunable properties by varying the composition and
thickness of the core and shell independently [30–32].

In this work, we present a model of membrane separation for
membranes containing olefin-binding nanoparticles. We seek to
predict overall trends in selectivity as a function of the olefin bind-
ing energy to nanoparticles. Changes in the selectivity as a function
of pressure is explained in terms of changes to the sorption and
diffusivity of the component molecules.

2. Model details

Beginning with the solution-diffusion model, five macroscopic
parameters are required to model a gas separation membrane
that contains nanoparticles. The diffusivity of molecules in the
neat membrane provides hopping rates for large diffusive jumps
between lattice sites. The density of nanoparticles in the membrane
and the olefin–nanoparticle binding energy to give an Arrhenius
probability of finding the olefin molecule bound to a nanoparti-
cle. The upstream pressure and the sorption coefficient provide
the concentration of gas molecules along the upstream edge of the
membrane in steady state.

In the solution-diffusion model, the membrane is treated as a
series of microcavities that gas molecules hop between based on
the thermal motion of the membrane’s polymer chains. This behav-
ior as represented in a lattice kinetic Monte Carlo (KMC) model as
molecules that may hop to adjacent sites on a N × N grid. A single
lattice site may only be occupied by a single gas molecule.

Fig. 1. Parameters for the KMC model are shown on a small, sample lattice. The
olefin hopping rate from a trap is � exp( − �E); paraffin hopping rates from traps
are the same as neat sites, � .

Periodic boundary conditions are applied at two opposite lattice
edges. Molecules that diffuse across the edge are brought back in
the corresponding row at the opposite edge. Similarly, molecules
at one of the edges can be blocked by a molecule in the same row at
the opposite edge. The lattice size is chosen such that edge effects
do not appear. In this manner, an effectively infinitely long slice
through a membrane is simulated.

The diffusivity, D, of the gas in the membrane provides the
site-to-site hopping rate for gas molecules in the membrane. For
a membrane with diffusivity, D, the rate of site-to-site hopping, � ,
is given by

D = ��2, (1)

where � is the diffusional jump distance. Eq. (1) is closely related to
the Einstein–Smoluchowski relation; however, in the KMC model
� represents the hopping rate to a single given adjacent site, not to
any of the four adjacent sites as in the case of surface diffusion. The
value of � for a membrane of total thickness L is given by L = � N.
In the KMC model, � is the natural unit of length and varying it
while holding the number of lattice points, N, constant represents
a change to the diffusional jump length. In what follows, � is taken
to be the unit of length.

Fig. 1 shows how the membrane is modeled with KMC. An
olefin/paraffin gas mixture reversibly adsorbs to the membrane
along one face, diffuses through the membrane, and passes through
the downstream face to be collected in a vacuum. In order to simu-
late the behavior of membranes containing olefin-specific binding
agents, randomly distributed lattice sites are treated as traps. The
fraction of trap sites, �, is a fixed parameter. Olefins on the lattice
bind to the traps with a binding energy, �E. The paraffin molecules,
however, do not bind to the trap sites and, thus, behave as if every
lattice site were a neat membrane site.

From a neat membrane site, the hopping rate, � , is the rate for a
molecule to hop to an adjacent, unfilled site. The hopping rate from
a trap site for olefin molecules becomes � exp( − �E) and remains
� for paraffin molecules. The binding energy �E is expressed in
units of kBT so that it appears as a unitless quantity in the Arrhenius
expression.

The choice of N is dictated by the sorption coefficient, S, which
relates the concentration of molecules at the upstream face of the
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membrane, C, at an applied pressure, p, by

S = C

p
. (2)

For a membrane of fixed thickness, L, and applied pressure, increas-
ing N increases the number of gas molecules adsorbed along the
upstream edge. Membranes with a large sorption coefficient neces-
sitate a finer lattice.

The last macroscopic parameter is the applied pressure at the
upstream face. The parameters of the simulation are in terms of
kinetic rates, however, not macroscopic pressures. A gas at pressure
p in equilibrium with a surface containing adsorption sites forms a
Langmuir isotherm,

�(p) = p

1 + p
, (3)

where p is taken to be in reduced units of the pressure, p0, at which
half of the sites are occupied. In this way, the pressure is a unitless
quantity defined by the sorption isotherm of the physical mem-
brane. The pressure is related to the rates of hopping onto and off
of the surface in the KMC model by

p = �on

�off
. (4)

The rate of desorption from the surface, � off, is chosen to be equal
to the rate of hopping between sites in the membrane, � . Then,
the pressure determines the rate for a molecule to hop onto the
membrane on the upstream face � on in the KMC model.

We have chosen to model separations for an upstream gas
containing equal partial pressures of olefin and paraffin. In the
KMC model, this is established with an equal probability for these
molecules to hop onto the lattice. The concentration of one of the
individual gas components along the leading edge is given in terms
of the partial pressures by 1

2 �(p).
Opposite the upstream face of the membrane is the downstream

face. On this edge, molecules may leave the lattice with rate � off.
Vacuum is enforced by setting the rate of molecules re-entering
along the downstream face to zero. Molecules leaving along this
edge are counted in the output flux of gas through the membrane.

A standard KMC algorithm is employed to model the diffusion
of particles along the lattice. Initial conditions are implemented
by randomly distributing trap sites in the membrane based on �.
With each KMC step, a cumulative function, R, is generated con-
sisting of the sum of all rates available to the system in the current
state. A random number is chosen on [0, R]. A given process is then
selected from R such that processes are proportionately weighted
so that faster processes are selected proportionately faster than
slower processes. A second random number, u, is generated on (0,
1] and the time step is updated as

�t = − ln u

R
. (5)

The unit of time in our model is taken to be � −1. The selected pro-
cess is then carried out and R is updated to reflect any processes
that either became available or unavailable in the new state, where
the algorithm is repeated. For a detailed description of the KMC
method, refer to Voter [33].

3. Results and discussion

The motivation for this work is to identify the statistical basis of
selectivity for olefins over paraffins in the steady state in gas sep-
aration nanocomposite membranes. To accomplish this goal, the
equations for the flux of each component gas are derived for both
the neat and trap-containing membranes. While the concentration
of each gas along the front edge is given exactly by the Langmuir

Fig. 2. The flux of particles in a neat membrane is plotted as a function of tempera-
ture. Inset is the Langmuir isotherm also as a function of pressure. The solid lines are
analytical predictions of Eqs. (3) and (7), and solid black circles are time-averaged
concentrations from individual KMC simulations. The red star marks the data point
at which KMC simulations begin to diverge. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of the article.)

isotherm, the diffusion statistics of the gases on the lattice are not
known exactly. With the flux equations derived, the statistical basis
for selectivity is an optimization problem in three parameters –
p, �E, and � – that can be solved analytically by separating the
problem into the following components.

3.1. Flux through a neat membrane

The permeability, P, of a single gas component in a membrane
is defined as the product of the diffusivity, D, and the sorption, S, in
the membrane. The permeability is a material property given by

P = SD = JL

�p
, (6)

where �p is the applied pressure difference and J is the flux of gas
through the membrane. In the KMC model, a vacuum is present
at the downstream face, so that the applied pressure across the
membrane is the same as the upstream pressure, �p = p.

As defined in Eq. (2), the sorption, S, is the concentration of
gas along the upstream face of the membrane divided by the
applied pressure. Within the KMC model, the concentration of
gas molecules along the edge of the lattice follows the Langmuir
adsorption isotherm in Eq. (3). KMC simulations were performed
on a neat membrane and the time-averaged concentration of
molecules along the edge in equilibrium with the gas are shown
(inset in Fig. 2) to agree with the Langmuir isotherm.

An expression for the flux through a single lattice site on the
downstream face is derived by substituting KMC model parameters
into Eq. (6) of the membrane to obtain

J = �
�(p)

L
. (7)

The flux of particles through the unit length � in unit time � −1 at
the downstream face is a function of p and the thickness L. As shown
in Fig. 2, there is good agreement between the KMC data and Eq. (7)
in the tracer diffusion limit, where the value of �(p) is very close to
zero and all molecules follow a two-dimensional random walk. As
shown by the red star, when the front edge of the lattice begins to
fill, the KMC flux diverges from Eq. (7). This expression assumes a
vacuum at the downstream face. A non-zero back pressure would
contribute a correction term from Eq. (3) that is not significant in
the linear-flux regime.

Along the axis between the upstream and downstream faces, the
diffusion of molecules is mathematically analogous to the problem
of the random walk in one dimension with an absorbing boundary.
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Fig. 3. The average transit times for molecules that enter the membrane at the
upstream face and eventually reach the downstream face are plotted as a function
of L2. Individual dots are KMC data points and the line is a linear fit.

For a semi-infinite line (x ≥ 0) with an absorbing barrier at the origin
and the tracer initially at x0 along the line, the probability of first
hitting x = 0 at time t is derived by Chandrasekhar [34] as

f (t) = x0√
4�Dt3

exp

(
−x2

0
4Dt

)
. (8)

The mean first passage time to reach x = 0,

〈t〉 =
∫ ∞

0

tf (t)dt = ∞, (9)

does not converge due to the fraction of tracers that spend most of
their time at large x before returning to x = 0. Without the fat tail,
the typical diffusion time over the distance x0 scales like

tx0∼ x2
0

4D
. (10)

On the membrane, however, molecules that move in the opposite
direction simply hop off of the membrane into the source gas. Eq.
(10) provides an approximate scaling law for the average transit
time for a molecule diffusing between the upstream and down-
stream face.

In Fig. 3 the observed transit times from the KMC model are
plotted as a function of membrane thickness, L. With increasing
thickness, the transit times are linear with L2. The least-squares
fit of a trend line passing through the origin gives a slope of 0.688

4D ,
which is consistent with the prediction from Eq. (10).

3.2. Membranes containing traps

In the KMC model, paraffin molecules see no change in hop-
ping rate from any site, whereas olefin molecules hop at either �
from a neat site or � exp( − �E) from a trap site due to the bind-
ing energy �E. The overall effect of the heterogeneity in hopping
rates is that paraffin molecules are unaffected by traps and olefin
molecule diffusion is hindered.

For traps that are in equilibrium with the applied gas, the frac-
tional filling of traps by olefins is given by the Langmuir adsorption
isotherm for a mixed gas system,

�trap = pole exp(�E)
1 + ppara + pole exp(�E)

, (11)

where pole and ppara are the partial pressures of the olefin and paraf-
fin respectively.

The fractional distance through the membrane may be defined
as �, where � = 0 at the upstream face and � = 1 at the downstream
face. As shown in Fig. 4, a “piling up” effect occurs as the trap filling

Fig. 4. Trap filling for the KMC model in profile through the membrane are shown
as a function of applied pressure at the upstream face. Occupancy values are nor-
malized by the isotherm of Eq. (11) such that 1 is as predicted by the isotherm and
0 is no traps filled. All profiles are time-averaged under steady state conditions for
� = 0.2 and �E = 9.6.

profile becomes non-linear. This effect occurs in the limit of low trap
loading and high pressures where the effective pressure gradient is
roughly linear. In the limit of large trap loading, as seen in Fig. 5, the
concentration in � approaches the Fickian case with a linear profile.

3.2.1. Sorption and diffusivity of paraffins
Paraffin molecules do not interact with traps and, as a conse-

quence, their overall diffusivity and sorption on trap-containing
lattices is affected only by the blocking effect of the olefins. The
availability of sites for paraffins through the membrane is con-
trolled by the filling of trap sites by olefins. The concentration along
the upstream face is

Cpara = [1 − ��trap(pole)]�(ppara). (12)

where �trap is the fraction of filled traps from Eq. (11) and �(ppara) is
the isotherm of Eq. (3) as a function of the partial paraffin pressure.

The diffusivity for paraffins on a square lattice containing mobile
obstacles, the olefins bound in traps, cannot be solved exactly. Cor-
relation function analysis reveals the diffusivity to be a product of
an obstruction factor, D*, which is a function of obstacle concentra-
tion, c, and the ratio of molecule jump rate to that of the obstacles,
	 . The correlation function analysis was performed by van Beijerin
and Kutner [35] and and expanded upon by Saxton [36].

Fig. 5. The KMC model trap fillings in profile through the membrane are shown as
a function of trap density on the lattice. The profiles are normalized as detailed in
Fig. 4. All profiles are time-averaged under steady state conditions for pole = 0.001
and �E = 4.8.
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The overall diffusion constant for the molecule diffusing
amongst mobile obstacles is

D(c, 	) = DneatD
∗(c, 	) = Dneat(1 − c)f (c, 	). (13)

The correlation factor, f, is given by

f (c, 	) =
√

A2 + B2 − A

2	(1 − c)f0
, (14)

where

A = (1 − 	)(1 − c)f0 + c, (15)

B = 2
√

	(1 − c)f0, (16)

and

f0 = 1 − 


1 + (2	 − 1)

. (17)

The constant 
 is dependent on the type of lattice; for a square
lattice it is equal to 1 − 2

� . The ratio of hopping rates 	 is given by

	 = exp(−�E). (18)

The only quantity which is not known analytically in Eqs. (13)–(17)
for D* is the concentration of filled traps, c. To simplify our
derivation, we will neglect the inhomogeneity of the filled trap
concentration and approximate c as its value at the upstream face

c = ��trap(pole) (19)

For low trap densities and at low pressures Fig. 4 shows that c drops
linearly across the membrane. This is the worst case for the approx-
imation – c is overestimated by a factor of two. Fortunately, this low
c limit is where D*, which is largely determined by (1 − c), is close to
unity and the value of c is not important. In the high concentration
limit where traps strongly effect the diffusivity, the approximation
in Eq. (19) becomes increasingly accurate. Although a vacuum at the
downstream face is assumed, in the limit of small back pressure, the
mean-field approximation becomes more accurate, as well.

In the limit of 	 → ∞, the percolation threshold is reached at
c ≈ 0.41, above which long range diffusion stops. Below this limit,
long-range diffusion is possible but obstructed. The overall diffusiv-
ity for paraffins also contains D* terms due to the blocking effect of
paraffins and unbound olefins; however, in the low pressure limit,
these terms are close to unity and can be disregarded. The flux,
then, of paraffins is produced by combining Eqs. (12) and (13) into
Eq. (7) to produce

Jpara = (1 − ��trap)
�(ppara)

L
�D∗. (20)

Fig. 6 shows the comparison between the analytic model and
the full KMC simulation. The KMC data are in agreement with the
model at weak binding and low pressure, and although there is
some divergence as pressure increases, the trend in paraffin flux is
captured over the range of pressures considered.

The approximations that result in the paraffin diffusivity given
in Eq. (13) are tested by plotting the transit time as a function
of membrane thickness. The transit times for varying thicknesses
of the membrane with different applied pressures are shown in
Fig. 7. Diffusion is normal for all applied pressures – all transit
times are linear in L2. The ratio of the slopes provides the exact
diffusivity experienced by paraffin molecules that leave the mem-
brane through the downstream face. These values from KMC are
compared to the value predicted by Eq. (13) in Table 1.

The comparison between the analytical prediction and the KMC
data provides a measure of validity for the approximation of c in
Eq. (19). Approximating the total concentration of occupied traps
by the front end trap filling overestimates the actual filling. In the
low pressure cases, the difference between analytical and observed

Fig. 6. The flux of paraffins in solid black and olefins in dashed red through the
downstream face under different olefin trap depths, �E, and trap coverages, �, is
plotted as a function of partial pressure. Markers – stars for olefins and circles for
paraffins – are KMC data and the lines are from Eqs. (20) and (21). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of the article.)

Fig. 7. The average transit times for paraffin molecules in the KMC model are plotted
as a function of the square of membrane thickness, L2 for � = 0.4 and �E = 4.8 at three
olefin partial pressures. The neat membrane is shown for comparison. Solid lines are
the lines of best fit to the data.

is quite small; however, with increasing pressure the analytical
expression underestimates the effective diffusivity by nearly a fac-
tor of two. Comparing Table 1 with Fig. 6 provides an explanation
for the deviation from the analytical projection in the KMC model.
With high pressures, larger fluxes of paraffins are observed than
predicted due to the underestimation of the effective diffusivity.

3.2.2. Sorption and diffusivity of olefins
The expression for the permeability of olefin molecules must

obey several limiting cases. The net permeability for olefins must
converge to that of paraffins in the limit of the trap coverage and/or
trap depth going to zero, � → 0 and �E → 0, respectively. Similarly,
as �E → ∞, the permeability of olefin molecules must return to that
of paraffins; this is the case of molecules moving amongst immobile
obstacles. To conform with these limiting cases, as p → ∞ or p → 0
the selectivity for olefins over paraffins must return to unity.

Table 1
Comparison of predicted Dpara to KMC for � = 0.4 and �E = 4.8.

Case Analytical KMC

ppara = 0.001 0.907 0.959
ppara = 0.01 0.534 0.739
ppara = 0.1 0.228 0.396
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Although molecules may freely diffuse between trap sites and
neat sites on the lattice, the steady state statistical behavior may
be modeled as two distinct pathways, one containing only neat
sites and the other containing only trap sites. The permeability of
olefin molecules is thus represented as a sum of terms representing
the flux contribution from unbound olefin molecules and that from
olefin molecules bound in traps. This model is similar in form to the
dual-sorption model [15], which contains a neat membrane term
and a term due to the reversible binding at fixed site carriers, the
analogue of traps on a lattice.

The permeability from the two modes of transit is

Pole = SneatDneat + StrapDtrap. (21)

The first term in this expression is functionally similar to Eq. (20).
The sorption, however, has a slightly different form. Because olefin
molecules interact with traps, the maximum amount of unbound
olefin molecules is limited to (1 − �). In this case, the neat concen-
tration is

Cole,neat = (1 − �)�(pole). (22)

In the limits of low trap coverage, small �, Eq. (22) is approximately
equal to Eq. (20). The diffusion constant, Dneat, is equal to the paraf-
fin case of Eq. (13). As in the paraffin case, additional D* factors
due to blocking effects of paraffins and other unbound olefins are
close to unity and may be neglected at low pressure. The neat flux
contribution is

Jole,neat = � (1 − �)
�(pole)

L
. (23)

The second term in Eq. (21) is functionally similar to the neat
case. The overall diffusivity is the Einstein–Smoluchowski relation
for a homogenous lattice containing only traps which is

Dole,trap = Dneat exp(−�E). (24)

The concentration of filled traps at the front edge is given by Eq.
(11) multiplied by �, the fraction of trap sites,

Cole,trap = ��trap(pole). (25)

The flux for the trap contribution is obtained from Eqs. (11) and
(24) as,

Jole,trap = ��
�trap(pole)

L
exp(−�E). (26)

As p → ∞ or � → 0, the neat membrane case, this term vanishes.
Fig. 6 shows the agreement between the KMC data and the

analytical model of olefin flux. Unlike the paraffin case, the olefin
expression does not diverge from observations at large trap con-
centrations. At high trap concentrations, the term from Eq. (26)
dominates.

3.2.3. Selectivity
For olefin/paraffin separation membranes, the parameter that

directly measures the membrane’s ability to separate the two gases
is the selectivity,

˛ = Pole

Ppara
= Jole

Jpara
= SoleDole

SparaDpara
. (27)

The selectivity expression from Eq. (27), when combined with Eqs.
(20) and (21), yields the two-term expression

˛ = Sole,neatDole,neat

SparaDpara
+ Sole,trapDole,trap

SparaDpara
. (28)

The first term in this expression, the ratio the permeability of
olefin molecules on non-trap sites to the permeability of paraffin
molecules, approaches unity as p → ∞. As p → 0, the different sorp-
tion expressions from Eqs. (12) and (22) results in this first term
approaching (1 − �).

Fig. 8. Selectivity for olefins over paraffins as a function of olefin partial pressure is
plotted from KMC data. Solid lines are the analytical expression from Eq. (28).

In the second term, olefin trap sorption is larger than paraffin
sorption as p → 0. The olefin trap sorption has a theoretical max-
imum of �, and this is the limiting case as p → 0. With increasing
pressure, the denominator [from Eq. (26)] dominates and this term
tends toward zero.

The behavior of each of these terms acts in contrast – one rises
from (1 − �) towards a maximum of unity while another drops
from a maximum of � toward zero. The rates at which these terms
approach the limiting cases are not, however, equal.

The paraffin diffusivity, in the denominator of both terms,
depends directly on the olefin trap sorption as shown in Eq. (19).
With increasing �E and/or pressure, the sorption of olefins on traps
becomes larger while the diffusivity of paraffins becomes smaller.
This coupling of terms does not lead to a clean analytical derivative
for a peak selectivity as a function of pressure in Eq. (28). The over-
all selectivity as a function of pressure for different trap depths is
shown in Fig. 8.

3.2.4. Optimizing selectivity
As discussed in Section 2, a set of macroscopic input parameters

are required for our lattice model, including the applied pressure,
olefin trap site concentration, and olefin binding energy. From the
model, the resulting permeability and selectivity of the membrane
can then be determined. The primary focus of this paper is to deter-
mine how these properties of interest are dependent upon the input
parameters and how they can be optimized within that parameter
space.

Some parameter changes have a simple effect. From Eq. (28)
it is clear that increasing � will increase the olefin trap-diffusion
pathway and therefor increase the selectivity. The applied pressure,
however, does not lead to a monotonic trend; there is no selectivity
of olefins over paraffins in the limits of both high and low pressure.

In the following, we show that there is a peak in selectivity at an
optimal applied pressure which is (to first order) directly related
to the rate at which olefins leave trap sites. So while it is desirable
to maximize both selectivity and the flux of gas through the mem-
brane, we have decomposed these into separate objectives. Given
a membrane, we show how to set the applied pressure to maxi-
mize selectivity. Then, the membrane parameters can be adjusted
to maximize flux while maintaing optimal selectivity (by, for exam-
ple, reducing the binding of olefins to traps).

The two-term expression for selectivity in Eq. (28) may be
simplified in order to find a derivative that gives a reasonable pre-
diction of the peak position in pressure. In the first term, the ratio
Dole,neat

Dpara
is equal to unity and may be ignored. This first term may
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now be represented as

Sole,neat

Spara
= pole(1 − �)

ppara − pparapole�
	+	pole+pole

, (29)

where 	 = exp( − �E) is the same as in Eq. (18).
The second term is more complex; however, it may be simpli-

fied. From Eq. (13), f(c, 	) is close to unity and slow to change with
pressure, so it may be ignored. The ratio of diffusivities reduces to

Dole,trap

Dpara
≈ 	

1 − pole�
	+	pole+pole

, (30)

if f(c, 	) is disregarded. Similarly, the sorption ratio is

Sole,trap

Spara
= �(1 + ppara + pole)pole

[	 + pole(	 + 1 − �)]ppara
. (31)

These equations simplify by considering the case where pole = ppara.
Putting Eq. (29) plus the product of Eqs. (30) and (31) together,
taking the derivative, and setting it to zero yields the pressure for
which selectivity is maximized,

pmax˛ = 2(	2 + 	�)

� − 	 − (	 − �)2
. (32)

The full selectivity expression for Eq. (28) is plotted with KMC
data in Fig. 8. Peaks in selectivity from the KMC simulations are
accurately reproduced with the analytical model; the actual mag-
nitude of selectivity, however, is somewhat overestimated.

In Fig. 8, a clear trend is present: the peak of selectivity occurs at
large pressures for weak binding and at small pressures for strong
binding. With trap depth and pressure there is a tradeoff. High
pressures and trap depths increase olefin sorption and drive down
paraffin diffusivity. However, from Eq. (26), as p → ∞ and �E → ∞,
the olefin trap permeability – and consequently the second term
of Eq. (28) – is driven to zero. The predicted pressure at which the
peak of selectivity occurs is plotted against KMC data in Fig. 9. The
KMC data follows the analytical model quite closely.

As a first approximation to Eq. (32), the maximum of selectivity
may be reduced to

pmax˛ ≈ 2	. (33)

The implication of Eq. (33) is that selectivity is maximized at the
point when the applied pressure is equal to the Arrhenius factor for
escaping a trap site. At this point, molecules are entering the lattice
at the same rate that trapped molecules are leaving traps.

Two limiting cases are apparent. In the limit where 	 ∼ �, the
squared term in the denominator of Eq. (32) can be ignored and the

Fig. 9. The peak of selectivity from KMC data is plotted against Eq. (32) for � = 0.2.
Inset is the analytical magnitude of selectivity at pmax ˛ for each �E along with the
corresponding KMC data.

Fig. 10. The selectivity data from Fig. 8 is plotted against the olefin flux at that
pressure normalized by the neat membrane flux from Eq. (7). The x-axis is the ratio
of olefin flux for membranes with traps to the neat membrane flux at the same
pressure.

entire expression is reduced via Taylor expansion to

pmax ˛ ≈ 2	
(

1 + 2	

�

)
. (34)

In the weak binding limit, the second term explains the curve
observed in Fig. 9. In the limit of 	 � �, however, the squared term
behaves simply like �2. Considering this limit, Eq. (32) reduces to

pmax ˛ ≈ 2	 exp(−�). (35)

Eq. (34) contains an additional term that become significant as 	
approaches the same order of �. This correction term shifts the peak
of selectivity to an applied pressure that is slightly larger than the
escape rate from the traps.

Substituting Eq. (34) into Eq. (27) gives the magnitude of selec-
tivity at the optimal pressure for each trap binding energy. As
shown inset in Fig. 9, the actual magnitude of selectivity at the opti-
mal pressure for a given binding energy is not constant. Both KMC
data and the analytical model indicate that more selectivity is possi-
ble for weaker binding. Our model indicates that when the pressure
is optimal for the binding energy, weaker binding is preferable due
to the larger resulting selectivity.

3.2.5. Comparison to neat membrane
Maximizing selectivity by increasing the concentration of traps

and applying the optimum pressure may not be ideal for produc-
ing a physical membrane. Traps, by definition, slow the diffusion
of molecules. An ideal membrane maximizes both selectivity and
the flux of olefins. At large trap depths, the benefit of the large
selectivity is offset but the slow transit of olefin molecules.

The selectivity data at various pressures for � = 0.2 is plotted
on the y-axis of Fig. 10 while the x-axis is the olefin flux for the
trap-containing membrane divided by the neat membrane flux at
the same pressure. The common position of the maxima demon-
strates that increasing the trap depth does not affect the relative
permeability at peak selectivity.

In the regime of low applied pressures, the sorption profile is
roughly linear – double the pressure means roughly double the
resulting flux. Given that there is the same flux penalty for introduc-
ing trap sites regardless of �E at the pressure of peak selectivity, in
absolute terms it is most sensible to design membranes with weak
binding trap sites. These membranes maximize selectivity at high
pressures, and, in absolute terms, the flux of olefins is maximized
as well.
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4. Conclusions

We have presented a lattice model of nanoparticle-containing
membranes that identifies parameters to enhance olefin/paraffin
separation. Olefins bind tightly to nanoparticles due to a d–�* inter-
action that is unavailable to paraffins. In steady state, a larger flux of
olefins is noted as a function of applied pressure, nanoparticle bind-
ing energy, and area fraction of nanoparticle binding sites in the
membrane. We show, both numerically and analytically, how the
selectivity and permeability of the membrane depend upon these
parameters.

Our model demonstrates that change in permeability of paraf-
fins is the result of both sorptive and diffusive effects. The sorption
of paraffins is driven downward due to the lack of available sites
as traps begin to fill with pressure. The diffusivity of paraffins is
analogous to the case of tracer diffusion in an archipelago of mobile
obstacles. Long-range diffusion is obstructed but possible as long as
the obstacles are mobile and diffusion is normal over long distances.
Overall olefin permeability is the statistical average of contribu-
tions from olefin molecules in neat and trap regions. Neat olefin
diffusivity is exactly that of paraffins – obstructed by slower moving
obstacles. Trap olefin diffusivity, however, is slowed by the energy
of binding to traps the and resulting lower Arrhenius diffusion rate.
The lowered diffusivity of olefin molecules is offset by the increase
in sorption due to the filling of the traps.

We show that the balance between sorption and diffusivity for
olefins is not perfectly offsetting and that selectivity is the result.
The selectivity of olefins is maximized when the applied pressure
results in a rate molecules entering the membrane that is compa-
rable to the rate olefins leave traps. When the optimum pressure is
applied, the selectivity is constant for strong binding and increases
for weaker binding. Thus, weaker binding traps offer higher selec-
tivity at the optimal pressure.

From this model, trends of selectivity in physical membranes
may be predicted. Increasing the fraction of olefin-binding sites
(concentration of nanoparticles) in the membrane will increase
the selectivity. The optimum pressure to maximize selectivity is
directly related to the binding energy of olefins onto the traps. If
the binding of olefins is reduced, then the applied pressure must
be higher to maximize selectivity. The maximum of selectivity at
the optimal pressure is constant in the strong binding regime and
becomes larger in the weak binding regime.

Starting from five macroscopic parameters – sorption, diffusiv-
ity, binding energy, pressure, and area fraction of nanoparticles – it
is possible to predict the selective behavior of a membrane and
identify trends as these parameters are adjusted. The optimiza-
tion criteria can now be tested experimentally to verify our design
principles for making better separation membranes.
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