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A B S T R A C T   

Tin sulfide/nitrogen-doped mesoporous carbon (SnS2/NC) composite material is identified as a prospective 
anode material in lithium-ion batteries. Nevertheless, the evolution mechanism of SnS2/NC anode and the 
electronic conductivity of nitrogen-doped carbon to SnS2 are still unclear. Meanwhile, the preparation process of 
SnS2/NC is complicated and requires the use of harmful solvents. Herein, we propose a simple and green strategy 
for the construction of SnS2/NC nanosheets, and investigate its evolution mechanism and electronic conductivity 
in detail. DFT calculations substantiate the improved electronic conductivity and heightened Li adsorption af-
finity after N doping. Profiting from the enhancement of electronic conductivity and Li adsorption affinity, the 
SnS2/NC anode attains a satisfactory discharge capacity (863.9 mAh/g at 100 mA/g over 100 cycles). Corre-
spondingly, the assembled full cell achieves a capacity attenuation of solely 0.3% per cycle over 90 cycles. Upon 
lithiation, a sequential evolution mechanism, containing intercalation, conversion and alloying reactions, is 
reported on the basis of in-situ XRD, ex-situ XPS, and NMR characterizations. Additionally, ex-situ Raman reveals 
the reversible evolution of SnS2. These findings could afford significant reference and guideline for the evolution 
mechanism of other metal sulfides materials in energy storage areas.   

1. Introduction 

Two-dimensional (2D) layered metal dichalcogenides (e.g., FeS2 [1], 
CoS2 [2], MoS2 [3], and SnS2 [4]) have recently triggered remarkable 
attention in lithium-ion batteries (LIBs) due to their enchanting theo-
retical capacity and rich resources. Among these metal dichalcogenides, 
SnS2 possessing a layered CdI2-type structure is viewed as a hopeful 
anode material in LIBs because of its appealing theoretical specific ca-
pacity of 1232 mAh/g and large interlayer spacing of 5.9 Å [5,6]. Un-
fortunately, the electrochemical properties of SnS2 electrode sharply 
fade upon cycling processes owing to its inferior conductivity and vast 
volume variation, which extremely restrains its practical applications 

[7,8]. 
Preparation of composites of SnS2 nanostructures and carbonaceous 

materials is the most popular applied method to circumvent these ob-
stacles [9-12]. The nanostructured SnS2 with various morphologies, 
such as nanoparticles [13], nanoflowers [14], nanorods [15], nanobelts 
[16], and nanosheets [17], could effectively dilute the mechanical stress 
caused by volume variation upon cycling and decrease the Li+ diffusion 
path, leading to an enhanced rate performance [18,19]. In addition, the 
integration of carbonaceous materials into SnS2 nanostructures could 
greatly ameliorate the conductivity and cushion the volume variation of 
the electrodes [20]. 

More impressively, heteroatom (N, S, B, P, etc.) doping has become a 
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valid tactic to fortify the physical and chemical properties of carbona-
ceous materials [21,22]. Specifically, N-doping in the carbonaceous 
material could heighten electrical conductivity, introduce defects, and 
generate more active sites for Li+ storage [23,24]. Additionally, N- 
doped carbon (NC) can produce a stronger attraction to Li+, thereby 
affording an improved rate capability [25]. Some researchers intro-
duced N-doped carbon matrix (NCM) to augment the conductivity and 
cushion the volume variation, and improved Li+ storage properties are 
realized in SnS2/NC composite, such as the fabrication of SnO2-SnS2@C/ 
NG [26], SnO2@SnS2@NG [27], HPC-SnS2-PAN [28] and N-HPC/SnS2 
composites [24]. The better electrochemical performances of these 
composites are connected with the synergistic effect between nano-
structures and NCM or N-carbon coating. Nevertheless, the advance-
ment of SnS2/NC anode is still in its infancy and there still remains some 
pivotal issues unresolved: i) the hydrothermal or solvothermal methods 
for the synthesis of SnS2/NC composites were a complex multi-step 
procedure demanding long reaction times, high-cost Teflon-lined auto-
clave, and the use of harmful solvents, which hindered the mass pro-
duction for commercialized application. ii) The affect of N-doping on 
electronic conductivity and Li+ storage behaviors of SnS2 was relatively 
ambiguous. iii) The electrochemical evolution mechanism of SnS2 at 
different charge/discharge states was still unclear. Consequently, to 
fully tap the potential of SnS2-based anode, designing a simple and green 
strategy to prepare SnS2/NC composite and deeply comprehending its 
evolution mechanism and electronic conductivity of nitrogen-doped 
carbon to SnS2 is extremely essential. 

This work reports a facile and green strategy for the construction of 
SnS2/NC nanosheets. DFT calculations reveal the improvement of elec-
tronic conductivity and adsorption affinities of Li after N doping. In view 
of these merits, the as-synthesized composite achieves remarkable 
electrochemical properties in half batteries and good application pros-
pects in full batteries. Upon initial lithiation/de-lithiation, a reversible 
sequential evolution mechanism of lithium ion and SnS2/NC is studied 
in detail based on in-situ XRD, ex-situ XPS, NMR, and Raman. 

2. Experimental 

2.1. Materials fabrication 

2.1.1. Synthesis of Sn/N-doped mesoporous carbon (Sn/NC) and Sn/ 
mesoporous carbon (Sn/C) 

Sn/NC composite was synthesized through pyrolysis of a mixture of 
disodium stannous citrate (5 g) and urea (0.15 g) at 750 ◦C for 1 h under 
Ar protective environment and then cleaned the self-formed template 
(Na2CO3) with deionized (DI) water. The preparation of Sn/mesoporous 
carbon (Sn/C) composite was performed according to the same process 
except for the absence of urea. 

2.1.2. Synthesis of SnS2/NC and SnS2/C 
SnS2/NC composite was obtained by a facile sulfuration process as 

follows: Two individual alumina square crucibles loading 0.4 g prepared 
Sn/NC and 2 g sublimed sulfur were successively placed in the tubular 
furnace, followed by heating to 500 ◦C for 3 h. Additionally, SnS2/C 
composite was manufactured by applying the same procedure as SnS2/ 
NC. 

2.2. Materials characterizations 

Field-emission scanning electron microscope (FE-SEM, SUPER55/ 
SAPPHIRE) and transmission electron microscopy (TEM, JEM-2100) 
were performed to discern the microstructural features. X-ray diffrac-
tion (XRD) patterns were recorded applying Rigaku-D/MAX-3A with Cu- 
Kα radiation (λ = 1.5406 Å). Raman spectra were gained through a 
T64000 triple Raman spectrometer. Fourier transform infrared (FTIR) 
spectroscopy was collected with Thermo Fisher Nicolet Is10. Thermog-
ravimetric analysis (TGA) was fulfilled on NETZSCH-STA409C. N2 
adsorption and desorption isotherms were performed via a micro-
meritics ASAP 2020. X-ray photoelectron spectroscopy (XPS) was 
implemented using a Kratos Axis Ultra DLD. The electronic conductiv-
ities were determined applying a four-point probe (FT-341) method. 

To comprehend the electrochemical reaction mechanism of SnS2/NC 
electrode, in-situ XRD analysis was carried out on Shimadzu XRD-7000 
diffractometer with Be window as the X-ray penetration. For ex-situ 
Raman and XPS measurements, the coin-type cells were dismantled in 
a glove box. The resulting pole pieces were cleaned in dimethyl car-
bonate solvent to remove the residual electrolyte and then dried in 
vacuum before the ex-situ characterizations. 

All 6,7Li Magic Angle Spinning Nuclear Magnetic Resonance (MAS 
NMR) experiments were acquired on Bruker 600 MHz (14.1 T) magnets 
with AVANCE NEO consoles using Bruker 3.2 mm HXY MAS probe. All 
samples were packed into rotors inside an Ar-filled glove box. The Lar-
mor frequency for 6Li and 7Li were 88.30 and 233.18 MHz, respectively. 
All 6,7Li were acquired by using single one-pulse program and referenced 
to 1 M LiCl solution at 0 ppm. The duration of the π/2 pulse was 2 μs for 
6Li and 4 μs for 7Li, respectively. The spinning rate was set to 18 kHz. 

2.3. Electrochemical tests 

The electrodes were manufactured by mixing with active materials, 
carbon black and sodium carboxymethyl cellulose (7:2:1) in DI water. 
The coin cells (CR-2032) were assembled with Li foils as counter elec-
trode in a glove box. The Celgard 2400 membrane and 1 M LiPF6 dis-
solved in ethylene carbonate/dimethyl carbonate/diethyl carbonate 
(EC/DMC/DEC, v/v/v = 1:1:1) were successively applied as the sepa-
rator and electrolyte. The loading mass and thickness of active material 

Scheme 1. Schematic diagram of SnS2/NC synthesis.  
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in electrode were around 1.1–1.3 mg/cm2 and 21 μm, separately. The 
galvanostatic charge/discharge (GCD) and galvanostatic intermittent 
titration technique (GITT) tests were executed on a LAND-CT2001A. 
CHI660D electrochemical workstation was utilized to test cyclic vol-
tammetry (CV) and electrochemical impedance spectra (EIS). 

The CR2032-type full cell was assembled via employing the as- 
prepared SnS2/NC as anode and commercial LiCoO2 as cathode. The 
charge/discharge performances of the full cell were tested at 200 mA/g 
between 2.0 and 3.9 V. 

2.4. Computational details 

Density functional theory (DFT) calculations were implemented by 
using Vienna Ab initio Simulation Package (VASP) [29,30]. The pro-
jector augmented wave (PAW) method and generalized gradient 
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) function 
were separately adopted to portray the electron–ion interactions and 
electron exchange–correlation energy [11]. All the atoms were 
completely relaxed during the calculation. The geometry optimizations 
and self-consistent computations are built with the cutoff energy of 400 

eV and a sampled Brillouin zone of 2 × 5 × 1 k-points model that 
accommodate the Monkhorst-Pack scheme grid mesh. The convergence 
criteria is projected with 0.02 eV/Å in force and 10-6 eV in energy. 

3. Results and discussion 

Scheme 1 depicts a schematic diagram of SnS2/NC synthesis. After 
direct pyrolysis of the mixture, the obtained Na2CO3 template and Sn 
particles are dispersed within the carbon matrix (CM), which can be 
observed by SEM image (Fig. S1). The existence of Na2CO3 is also 
demonstrated via XRD (Fig. S2). After cleaning with DI water, the 
Na2CO3 is removed and Sn/NC sample is gained. The XRD (Fig. S3) and 
SEM (Fig. S4) further identify the formation of Sn/NC. Subsequently, 
through a facile sulfuration treatment using sublimed sulfur, the Sn/NC 
composite is successfully converted as SnS2/NC. 

The XRD was applied to confirm the crystal structure of SnS2/NC and 
SnS2/C. As plotted in Fig. 1a, the diffraction signature is well indexed to 
hexagonal SnS2, exhibiting a high crystallinity. However, the diffraction 
signature of carbon hasn’t been found because of the amorphous form. 
Raman spectra further supply details about the structural information 

Fig. 1. Characterizations of SnS2/NC and SnS2/C: (a) XRD patterns, (b) Raman spectra, (c) TGA curves, (d) N2 adsorption/desorption isotherms and (e) pore size 
distribution plots, (f) XPS full spectra, the magnified (g) Sn 3d, (h) S 2p, (i) C 1s and (j) N 1s spectrum. 
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(Fig. 1b). The narrow band (307 cm− 1) originates from the A1g mode of 
SnS2 in both SnS2/NC and SnS2/C, and another two wide peaks at 1345 
and 1591 cm− 1 are successively stemmed from defected-induced D band 
and graphitic G band of carbon [31]. This result reflects the coexistence 
of SnS2 and carbon. The ID/IG value is generally utilized to reflect the 
defect degree in CM [24]. Relative to SnS2/C sample (0.99), the ID/IG 
value in SnS2/NC is 1.05, indicating that the defect degree is enhanced 
after N-doping. The chemical bonding of SnS2/NC and SnS2/C was 
characterized by FTIR (Fig. S5a). The band at 627 cm− 1 is stemmed from 
Sn-S bond in both samples [32], suggesting that the SnS2 is successfully 
prepared. Additionally, the band (1443 cm− 1) in SnS2/NC is associated 
with the C-N bond, which illustrates the presence of the N element. TGA 
was operated for estimating the content of SnS2 in SnS2/NC and SnS2/C. 
Below 250 ◦C, there is around 1.1% weight loss of absorbed water 
(Fig. 1c). The weight loss between 250 and 690 ◦C is related to the 
oxidation of SnS2 to SnO2 and the decomposition of carbon. Conse-
quently, the content of SnS2 in SnS2/NC and SnS2/C is determined to be 
around 91.7% and 94.1%, respectively. The BET results deliver that the 
specific surface areas (SSA) of SnS2/NC and SnS2/C reach 53.2 and 31.6 
m2/g, separately, (Fig. 1d), and their average pore diameters are about 
12 nm based on the BJH desorption results, suggesting a mesoporous 
structure (Fig. 1e). The larger SSA and mesoporous structure of SnS2/NC 
can serve as rapid channels for the transmission of Li+. 

Fig. 1f records the XPS spectra of SnS2/NC and SnS2/C. The S, Sn, O, 
and C elements are detected in SnS2/NC and SnS2/C. In comparison with 
SnS2/C, SnS2/NC has a peak of N 1s. It can be confirmed by Elemental 
Analyzer that the content of N in the SnS2/NC is 0.99%. Fig. 1g gives the 
Sn 3d spectra, two peaks at 495 and 486.6 eV substantiate the formation 
of Sn4+ [32]. The S 2p spectra in Fig. 1h are deconvoluted as S 2p3/2 
(161.58 eV) and S 2p1/2 (162.75 eV), conforming with the S2- species 

[7]. The above results demonstrate the successful formation of SnS2 
phase again. It can be found that the peaks of Sn 3d and S 2p for SnS2/NC 
composite emerge a slightly shifted with respect to SnS2/C, which may 
be caused by the interaction between SnS2 and NC [27,33]. As observed 
in Fig. 1i, the C 1s spectrum of SnS2/NC is split into four components 
(284.25 eV, 285.7 eV, 286.5 eV, and 288.8 eV) [13,27]. The formation 
of C-N verifies N doping into the CM. Specifically, the spectrum of N 1s 
(Fig. 1j) is fitted with three peaks at about 400 eV (Pyrrolic-N), 398.2 eV 
(Pyridinic), and 401.1 eV (Graphitic-N), individually [34]. Based on the 
area percentage of the N 1s peaks, the proportion of pyridinic-N, pyr-
rolic-N and graphitic-N was 34.1%, 47.2%, and 18.7%, separately 
(Fig. S5b). The NC is helpful for the enhancement of conductivity and 
the increment of defects, thus facilitating the electrochemical properties. 

During the sulfuration process, Sn particles obtained (Fig. S4) by 
direct pyrolysis of disodium stannous citrate can grow unlimited and 
pierce the CM to turn into SnS2 nanosheets. The morphologies of SnS2/C 
and SnS2/NC are identified by employing SEM and TEM images. It can 
be found from Fig. 2a-b that the SnS2/NC composite is mainly con-
structed from highly ordered hexagonal nanosheets vertically arranged 
and compounded with NC, with 29–60 nm in thickness and 200–300 nm 
in diameter (Fig. 2f-g). A similar morphology is seen for the SnS2/C 
composite prepared without N-doping (Fig. 2c-d). The EDS mappings 
(Fig. 2e) collected from the SnS2/NC portray the distribution of Sn, S, N, 
and C elements. 

The TEM images displayed in Fig. 2f-i reveal the nanosheet archi-
tecture of SnS2 comprised of hexagons, which well supports the SEM 
observations. HR-TEM unveils that the interplanar distance of SnS2/NC 
(Fig. 2j) and SnS2/C (Fig. 2l) is both 0.28 nm, which stems from (101) 
plane of the SnS2. The SAED patterns from Fig. 2k and m present a series 
of distinct diffraction spots, verifying that the SnS2 is a monocrystalline 

Fig. 2. SEM images of (a-b) SnS2/NC and (c-d) SnS2/C. (e) Elemental mapping of SnS2/NC. TEM images of (f-g) SnS2/NC and (h-i) SnS2/C. (j) HR-TEM image and (k) 
SAED pattern of SnS2/NC. (l) HR-TEM image and (m) SAED pattern of SnS2/C. 
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feature [35,36]. 
Fig. 3a presents the initial three CV curves. During the 1st cathodic 

sweep, a peak at ~1.78 V originates from the Li+ embedding into SnS2 to 
form LixSnS2 (Eq. (1)) [37,38]. The peaks at ~1.6 and ~1.21 V are 
connected with the decomposition of SnS2 into metallic Sn and Li2S (Eqs. 
(2) and (3)), and the generation of the SEI [17,20]. Additionally, a peak 
at ~0.14 V corresponds to the emergence of LixSn alloy (Eq. (4)) [4]. 
During the 1st anodic sweep, the peaks emerged at 0.48–0.81 V derive 
from the dealloying process of LixSn [28,39]. The two peaks at ~1.89 
and ~2.2 V denote the extraction of Li+ from LixSnS2 and the conversion 
of unreacted Li2S to polysulfides [17,40]. The CV profiles superimpose 
well during the following cycles, reflecting better reversibility. The CV 
profiles of SnS2/C also present similar shape of peaks (Fig. S6). The 
above electrochemical conversion reactions are described in (1)-(4): 

SnS2 + xLi+ + xe− →LixSnS2 (1)  

LixSnS2 +(4 − x)Li+ + (4 − x)e− →Sn+ 2Li2S (2)  

SnS2 + 4Li+ + 4e− →Sn+ 2Li2S (3)  

Sn+ yLi+ + ye− →LiySn (4) 

Fig. 3b gives the cyclic properties of SnS2/NC and SnS2/C. The SnS2/ 
NC electrode affords the discharge/charge capacities of 1558.1/1211.8 
mAh/g (Fig. 3c), taking on an initial coulombic efficiency (ICE) of 
77.8%, higher than SnS2/C (71.5%, Fig. S7). Furthermore, the SnS2/NC 
electrode yields a discharge capacity of 863.9 mAh/g over 100 cycles. 
Contrarily, the discharge capacity of the SnS2/C only stabilizes around 
599.6 mAh/g. Additionally, the rate properties of SnS2/NC and SnS2/C 
are recorded at different current densities (Fig. 3d). Notably, the rate 
capability of SnS2/NC electrode is larger than SnS2/C electrode. SnS2/ 
NC electrode renders a series of initial discharge capacities of 1694.9, 
971.4, 834, 657.1, 582.6, and 553.1 mAh/g at 100, 200, 400, 600, 800, 
and 1000 mA/g in sequence (Fig. 3e). The properties are higher than 
SnS2/C electrode (Fig. S8). After converting to 200 mA/g, the capacity of 
the SnS2/NC electrode suddenly ascends up to 825.9 mAh/g. More than 
that, SnS2/NC electrode achieves terrific cycling stability as well 
(Fig. 3f). The SnS2/NC electrode still preserves well over 500 cycles, 
achieving a discharge capacity of 553.5 mAh/g, with a CE of approxi-
mately 99%. 

In comparison to the previously reported SnS2-based anodes, the 
SnS2/NC electrode affords a satisfactory discharge capacity (Table S1). 
This is resulted from the synergism between SnS2 nanosheets and NC, 

Fig. 3. (a) CV curves of SnS2/NC at 0.1 mV/s. (b) Cyclic properties of SnS2/NC and SnS2/C at 100 mA/g. (c) GCD profiles of SnS2/NC. (d) Rate capability of SnS2/NC 
and SnS2/C. (e) GCD profiles of SnS2/NC from 100 to 1000 mA/g. (f) Cyclic property of SnS2/NC at 800 mA/g. 
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remarkably elevating the lithium storage properties of SnS2/NC. On the 
one hand, the NC could fortify the electronic conductivity of SnS2. On 
the other hand, the N-doping could increase the defect in the CM and 
provide more active sites, promoting the diffusion of Li+. 

EIS tests were performed in Fig. S9 to monitor the electrochemical 
kinetics of SnS2/NC and SnS2/C. SnS2/NC shows a smaller semicircle 
than SnS2/C, attesting that the NC can fortify the electronic conductivity 
of the electrode, which is ulteriorly authenticated through four-point 
probe measurement (Fig. S10). The lithium reaction kinetics of SnS2/ 
NC and SnS2/C electrodes is acquired by GITT (Fig. 4a), which is utilized 
to assess the Li+ diffusion coefficient (DLi+) with Eq. (5) [41]: 

DLi+ =
4L2

πτ (
ΔES

ΔEτ
)

2 (5) 

Therein, L represents the Li+ diffusion distance, designating as the 
thickness of electrode; τ refers to the relaxation time. The calculated 
DLi+ of SnS2/NC at charging state is between 9.92 × 10-10 and 5.28 × 10- 

9 cm2/s (Fig. S11a), while SnS2/C ranges from 9.38 × 10-10 to 5.19 × 10- 

9 cm2/s at charging state (Fig. S11b). The higher DLi+ of SnS2/NC further 
demonstrates that the N-doping can augment defects in the CM and 
furnish more active sites for Li+ storage. 

To obtain an insight understanding about the fabulous rate capability 
of SnS2/NC, the kinetic analysis of the electrode was implemented. 
Fig. 4b and f display the CV profiles of SnS2/NC and SnS2/C at various 
sweep rates. The capacitive contribution could be quantified by 
employing Eq. (6) [32,42]: 

i = avb (6) 

Among them, a and b are constants. b = 0.5 and 1 individually reflect 
a diffusion-controlled and capacitive process. In our cases, as described 
in Fig. 4c and g, the b values of both electrodes are evaluated as 0.5–1.0, 
implying a coupled diffusion-controlled and pseudocapacitive process 
[43,44]. To disentangle the coupled process, the following Eqs. are used 
[45,46]: 

i(V) = k1v+ k2v1/2 (7)  

i(V)/v1/2 = k1v1/2 + k2 (8) 

Herein, the k1v1/2 stands for the diffusion-controlled process and k2v 
signifies the capacitive-controlled process. As calculated, the SnS2/NC 
electrode (Fig. 4d) possesses a higher capacitive contribution of 84.3% 
than the SnS2/C (83.2%, Fig. 4h) at 1 mV/s. In addition, in contrast to 
SnS2/C electrode (Fig. 4i), SnS2/NC electrode delivers larger ratios of 
capacitive contribution (Fig. 4e), which is consistent with its better rate 
capability. These results suggest that the enhanced capacitive behavior 
primarily originates from the N-doping, which supplies more active sites 
for Li storage. Furthermore, the synergistic constructing effect between 
SnS2 nanosheets and NC can further promote Li+ absorption, leading to 
the large capacitive behavior. 

To obtain a deeper insight into the N-doping influence on the elec-
tronic conductivity of SnS2, DFT calculations were implemented. The 
PDOS of SnS2/C and SnS2/NC are revealed elaborately. Compared with 
SnS2/C (Fig. 5a), the PDOS value of SnS2/NC around the Fermi level 

Fig. 4. (a) GITT profiles of SnS2/NC and SnS2/C. CV profiles of (b) SnS2/NC and (f) SnS2/C at various sweep rates. b-value analysis for (c) SnS2/NC and (g) SnS2/C. 
Capacitive contributions of (d) SnS2/NC and (h) SnS2/C. Contribution ratio of capacitive and diffusion-controlled for (e) SnS2/NC and (i) SnS2/C at various 
sweep rates. 
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Fig. 5. Partial density of states (PDOS) of (a) SnS2/C and (b) SnS2/NC. Charge density difference of (c) SnS2/C and (d) SnS2/NC. (e) Modeling of SnS2, NC, and C. (f) 
A survey of the calculated adsorption energies (Eads) of Li atom with SnS2, NC, and C. 
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(Fig. 5b) is enhanced significantly, as well as the contribution of the 
introduced N element to the peak intensity, which suggests that the 
electronic conductivity and electron transport kinetics after N-doping 
are superior to those of SnS2/C. Meanwhile, the actual electronic con-
ductivity was assessed via four-point probe. The electronic conductivity 
of SnS2/NC is calculated as 2.91 × 10-3 S/cm (Fig. S10), higher than 
SnS2/C (1.05 × 10-3 S/cm), illustrating that N-doping can strengthen the 
electronic conductivity of SnS2, further supporting the DFT calculations. 

In addition, the charge density difference maps of SnS2/NC and 
SnS2/C are provided in Fig. 5c-d. Relative to the SnS2/C (Fig. 5c), the 
SnS2/NC exhibits a greater degree of charge transfer (Fig. 5d), indicating 
powerful electronic interaction at the interface of SnS2/NC, which can 
efficaciously reinforce the electronic conductivity and ion diffusion ki-
netics of SnS2/NC because of the promoted charge transport at the 
interface. 

To gain a better understanding of the N-doping influence on the 
properties of SnS2, the Li-adsorption abilities on various structures were 
simulated by DFT calculations (Fig. 5e). The computed adsorption en-
ergies (Eads) between Li atoms and various species within the SnS2/NC 
host are generalized systematically in Fig. 5f. Specifically, SnS2 (101) 
displays the highest Eads, reflecting boosted Li+ transport kinetics in the 
(101) plane. In addition, the Eads of Li atom adsorbed on the pure carbon 
is − 0.357 eV. After introducing different N-doping sites, the Eads values 
are calculated as − 0.132 eV (Graphitic-N), − 0.976 eV (Pyridinic-N), and 
− 1.22 eV (Pyrrolic-N), separately. The higher Eads of Pyridinic-N and 
Pyrrolic-N manifest the more powerful Li+ adsorption ability. As a 
result, it is theoretically vindicated the improved Li+ storage capabilities 
after N-doping, such as eminent rate performance and capacitive 
behavior. 

To clearly expound the Li+ storage mechanisms of SnS2/NC at 
different charge/discharge (CD) states, in-situ XRD analysis for the 
initial cycle was performed between 0.01 and 3.0 V (Fig. 6 and Fig. S12). 
The peaks at 39.0◦, 41.6◦, 44.4◦, and 46.3◦ are designated as BeO and Be. 
During the initial discharging, the peaks at 15.4, 28.6, 32.1, and 41.9◦

are associated with SnS2. With the discharge process proceeding, the 
intensities of SnS2 peaks gradually turn weaker and vanish. Simulta-
neously, two new peaks emerge at 33.4◦ and 48.2◦, relevant to the Li+

embedding into SnS2 to form LixSnS2. When discharged to 1.22 V, the 
diffraction peaks induced by metallic Sn are observed at 43.9◦ and 45.0◦, 
and a new peak generates at 27◦ originating from the byproduct of Li2S, 
suggesting the conversion of LixSnS2 into Sn and Li2S. With further 
discharging, the peaks of the Sn disappear entirely, and the peaks of 
LixSn appear at 22.3 and 35.9◦, which demonstrates the conversion from 
Sn to LixSn alloys. During the charge processes, the peak signals of LixSn 
gradually fade away at 0.80 V, together with the formation of metallic 

Sn, indicating the dealloying process of LixSn alloys. With the electrode 
continuing charging, the peaks of Sn entirely disappear, whereas the 
peak of LixSnS2 is detected, implying the reverse conversion reaction 
between Sn and Li2S. After charging to 3 V, the diffraction peak of SnS2 
reoccurs at 41.9◦, which signifies the reversible emergence of SnS2. 
There are no strong diffraction peaks observed during cycling, indicative 
of the poor crystallinity of SnS2. The phenomenon was found in the SnS2 
anode previously reported [34,45,47-49]. 

To recap, the Li+ storage mechanisms of SnS2/NC electrode at 
different CD states can be described in (9)-(14): 

Intercalation: 

SnS2 + xLi+ + xe− →LixSnS2 (9) 

Conversion: 

LixSnS2 +(4 − x)Li+ + (4 − x)e− →Sn+ 2Li2S (10) 

Alloying: 

Sn+ xLi+ + xe− →LixSn (11) 

Dealloying: 

LixSn→Sn+ xLi+ + xe− (12) 

Reverse conversion: 

Sn + 2Li2S→LixSnS2 +(4 − x)Li+ + (4 − x)e− (13) 

Deintercalation: 

LixSnS2→SnS2 + xLi+ + xe− (14) 

To reveal the process of the conversion evolution of the SnS2/NC 
electrode, the ex-situ XPS was performed at diverse CD states (Fig. 7). 
The initial CD profiles are provided in Fig. 7a. After discharged to 1.9 V, 
two distinct peaks at 495 and 486.6 eV belong to Sn 3d3/2 and Sn 3d5/2 
(Fig. 7b), which are the same as the Sn 3d of fresh SnS2/NC, suggesting 
that SnS2 still exists. When discharged to 1.52 (Fig. 7c) and 1.2 V 
(Fig. 7d), each peak can be deconvoluted as two peaks originating from 
Sn4+ (495 and 486.7 eV) and Sn0 (494.4 and 486 eV), illustrating the 
coexistence of Sn4+ and Sn0. Specifically, the two peak intensities of Sn0 

(Fig. 7d) are stronger than those of Fig. 7c, while the peak intensities of 
Sn4+ gradually become weaker, indicating the gradual conversion re-
action of SnS2 to Sn. After discharging to 0.65 V (Fig. 7e), the two peaks 
of Sn4+ vanish utterly, manifesting that SnS2 has been thoroughly con-
verted to Sn. With further discharge to 0.01 V (Fig. 7f), the Sn0 peaks still 
exist. Meanwhile, the new peaks at 492.8 and 482.9 eV are connected 
with the Li-Sn bond in LixSn alloy [17]. After charged to 0.8 V, the 
electrode merely shows the Sn0 peaks (Fig. 7g), suggesting the 

Fig. 6. Contour plots of the in-situ XRD results for SnS2/NC electrode at different charge/discharge (CD) states.  
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dealloying reaction of LixSn to form Sn. When charged to 1.88 (Fig. 7h) 
and 2.23 V (Fig. 7i), the two peaks assigned to the Sn4+ signal emerge 
gradually, which means the gradual conversion of Sn to SnS2. After 
charging to 3 V, two significant Sn4+ signal peaks can be detected 
(Fig. 7j), implying the formation of SnS2. These results well confirm the 
process of conversion evolution as plotted in Eqs. (2–4). In addition, the 
S 2p spectrum of SnS2/NC electrode discharging to 0.01 V displays three 
weak peaks centered at 160.5, 161.9, and 162.7 eV (Fig. S13a), 
belonging to the Li2S, terminal S (ST) of partial polysulfide species (Li2S2 
or Li2S4), as well as Li2S3, respectively [17,50]. The peaks about 168.6 
and 170 eV may be because of the side oxidation of S2- [51]. After 
charging to 3 V, the S 2p spectrum (Fig. S13b) outlines three peaks 
including the ST (161.8 eV), bridging S (SB) in polysulfides Li2Sn (n > 4) 
(163.3 eV), and elemental S (S8, 164.4 eV) [50,52,53], while the peak 
around 168.6 eV still remains. The above outcomes prove the revers-
ibility of conversion and alloying reactions. Besides, the existence of 

intermediate polysulfides means that, apart from the mentioned con-
version and alloying reaction, mutual multi-step transformation from 
Li2S into low- and high-ordered polysulfides, as well as elemental S 
[17,52,53], take place during lithiation/delithiation process. This phe-
nomenon was analogous to that previously reported in WS2/g-C3N4 
composite [54]. Fig. S13c also gives the XPS spectra of Li 1s after dis-
charging to 0.01 V. Two obvious peaks at 54.5 and 55 eV are derived 
from Li-N and Li-S bonds [55], while the additional peak at 55.6 eV 
represents Li-Sn bond [56], which further reveals that the SnS2 is con-
verted to Li2S and LixSn alloy at this discharge stage, conforming with 
the reaction Eqs. (2–4) mentioned above. Additionally, Sn 3d spectrum 
only shows the presence of Sn 3d3/2 and Sn 3d5/2 after 50 cycles 
(Fig. S13d), matching well with the Sn 3d spectrum of fresh SnS2/NC, 
which substantiates the reaction stability of SnS2/NC electrode. 

Additionally, the evolution mechanism of the SnS2/NC electrode was 
further probed via ex-situ Raman spectra, as plotted in Fig. 7k and l. The 

Fig. 7. Ex-situ Sn 3d XPS spectra of SnS2/NC at various CD states (b-j). (a) The initial CD profiles of SnS2/NC at 100 mA/g. After discharged to (b) 1.9 V, (c) 1.52 V, 
(d) 1.2 V, (e) 0.65 V, (f) 0.01 V. After charged to (g) 0.8 V, (h) 1.88 V, (i) 2.23 V and (j) 3 V. Ex-situ Raman spectra of SnS2/NC at diverse (k) discharge and (l) 
charge voltages. 
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A1g mode of SnS2 (≈307 cm− 1) can be observed in the pristine electrode. 
With the intercalation of Li+, the intensity of the A1g mode peak de-
creases gradually and almost fades away when discharging to 0.65 V, 
which is relevant to the conversion of SnS2. Upon charging, the A1g 
mode peak of SnS2 appears at 1.88 V, and the A1g mode peak can be 
clearly detected at 2.23 V and 3 V, manifesting the reversible formation 
of SnS2. 

Nuclear magnetic resonance (NMR) spectroscopy has been testified 
as an effective tool to determine the local structure modification 
[57,58]. Here, solid-state 6Li and 7Li MAS NMR spectra of SnS2/NC 
electrode were collected and analyzed at different CD states during the 
first cycling. As plotted in Fig. S14a, all 7Li spectra display an isotropic 
signal located near 0 ppm with multiple orders spinning sidebands 
(SSBs) up to 600 ppm. Two or three components (overlapped peaks) are 
observed for all cycled electrodes. Therefore, we turn to 6Li NMR spectra 
with better spectral resolution due to its smaller quadrupole moment 
compared to that of 7Li. After discharging to 1.82 V (Fig. 8), the elec-
trode shows a peak at − 0.3 ppm, which is related to the residual elec-
trolyte (1 M LiPF6) [59]. Another peak at 1.4 ppm originates from 
LixSnS2. With further discharging to 1.21 V, a new peak appears at 
~2.35 ppm, indicating the formation of Li2S [60]. Upon deeply dis-
charged to 0.01 V, a weak 6Li signal at around 15.8 ppm could be 
connected with the formation of LixSn [61-63]. A reversible evolution 
trend is observed for the subsequent charge process. Additionally, a 
similar evolution is detected for 7Li NMR spectra. As shown in Fig. S14, 
for the fully discharged sample at 0.01 V (Fig. S14c-d), three 7Li signals 
at around 41.2 ppm, 30.5 ppm, and 15.8 ppm are ascribed to the gen-
eration of LixSn [61-63], which is not clearly detected in 6Li NMR 
spectrum because of low natural abundance of 6Li. In conclusion, the Li+

is first embedded into the SnS2 to form LixSnS2 upon discharge. With the 
embedding of Li+, the LixSnS2 converts to the Li2S. When fully dis-
charged, LixSn alloy is further formed. 

To prove the feasibility of SnS2/NC anode for actual implementation, 
a full cell was assembled employing LiCoO2 as cathode (Fig. 9a). As 
plotted in Fig. 9b-c, the SnS2/NC||LiCoO2 full cell achieves initial 
charge/discharge capacities of 998.4/642.3 mAh/g (based on the mass 
of anode) at 200 mA/g, with an ICE of 64.3%. After 90 cycles, there is 
467.9 mAh/g capacity maintained, showing a capacity deterioration of 
solely 0.3% per cycle and possessing a CE of 97.9%. More importantly, 
by connecting the full cell, commercial LED equipment can be lightened 
(Fig. 9d-e). The above results further testify the actual application 
perspective of SnS2/NC anode in LIBs. 

4. Conclusions 

In summary, we have successfully devised SnS2/NC composite via a 
simple and green strategy and systematically studied its evolution 
mechanism and electronic conductivity of nitrogen-doped carbon to 
SnS2. DFT calculations demonstrate that N doping increases the elec-
tronic conductivity, and also certify that the pyridinic-N and pyrrolic-N 
doped carbon structures are instrumental in the adsorbing Li+. These 
superiorities bestow the SnS2/NC composite with an impressive 
discharge capacity (863.9 mAh/g at 100 mA/g over 100 cycles). Addi-
tionally, the assembled SnS2/NC||LiCoO2 full cell possesses a capacity 
attenuation of solely 0.3% per cycle after 90 cycles, which can light up 
LED equipment. In-situ XRD, ex-situ XPS, and NMR spectra unravel the 
sequential evolution mechanism of SnS2 upon lithiation, involving 
intercalation (SnS2 + xLi+ + xe− →LixSnS2), conversion (LixSnS2 +

(4 − x)Li+ + (4 − x)e− →Sn + 2Li2S) and alloying (Sn + xLi+ +

xe− →LixSn) reactions. Ex-situ Raman unveils the reversible evolution of 
SnS2. Meaningfully, these findings could provide significant reference 
and guideline for the evolution mechanism of other metal sulfides 
materials. 

Fig. 8. Ex-situ solid state 6Li MAS NMR spectra for SnS2/NC electrode at various CD states. The initial CD curve is plotted on the right.  
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