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ABSTRACT
Machine learning potentials (MLPs) have attracted significant attention in computational chemistry and materials science due to their
high accuracy and computational efficiency. The proper selection of atomic structures is crucial for developing reliable MLPs. Insufficient
or redundant atomic structures can impede the training process and potentially result in a poor quality MLP. Here, we propose a local-
environment-guided screening algorithm for efficient dataset selection in MLP development. The algorithm utilizes a local environment bank
to store unique local environments of atoms. The dissimilarity between a particular local environment and those stored in the bank is evalu-
ated using the Euclidean distance. A new structure is selected only if its local environment is significantly different from those already present
in the bank. Consequently, the bank is then updated with all the new local environments found in the selected structure. To demonstrate
the effectiveness of our algorithm, we applied it to select structures for a Ge system and a Pd13H2 particle system. The algorithm reduced
the training data size by around 80% for both without compromising the performance of the MLP models. We verified that the results were
independent of the selection and ordering of the initial structures. We also compared the performance of our method with the farthest point
sampling algorithm, and the results show that our algorithm is superior in both robustness and computational efficiency. Furthermore, the
generated local environment bank can be continuously updated and can potentially serve as a growing database of feature local environments,
aiding in efficient dataset maintenance for constructing accurate MLPs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0187892

I. INTRODUCTION

Atomic simulations are valuable for understanding the behav-
ior of matter at the atomic and molecular levels and have been widely
used in physics, chemistry, materials science, and engineering. The
key step in atomic simulations is to construct a high-dimensional
potential energy surface (PES) of the target system,1–8 which is
usually achieved with either classical force fields or first-principles
methods.9–13 In the past two decades, machine learning has been
successfully used to learn PESs from the reference data obtained
from first-principles calculations.14–27 Machine-learning potentials
(MLPs) exhibit near first-principle-level accuracy with an afford-

able computational cost and enable large-scale and long-timescale
simulations.

Until now, various types of machine-learning methods have
been developed for MLP construction, including atom-centered arti-
ficial neural network (ANN) method,14,17,24,26,28–34 Gaussian approx-
imation potentials (GAPs),16,35,36 graph neural network (GNN)
potential, gradient-domain ML (GDML), spectral neighbor analy-
sis potentials (SNAPs), moment tensor potential (MTP),37,38 and
SGPR-based universal potentials (SGPR: sparse Gaussian pro-
cess regression),39,40 among others. These methods have found
widespread applications in the fields of materials science, chemistry,
and biology. For example, the ANN method has been successful in
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fitting potential energy surfaces for Si and water systems, result-
ing in reasonably accurate predictions of phase behaviors.41,42 The
deep potential approach has also demonstrated a notable perfor-
mance in reproducing phase diagrams of bulk water and gallium,
approaching the accuracy of first-principles methods.43,44 MLPs
developed using GAPs for the elements V, Nb, Mo, Ta, and W
have shown encouraging accuracy in computing elastic, thermal,
and surface properties of the corresponding bulk materials.45 The
SGPR method is also effective in generating universal potentials for
noncyclic hydrocarbons, irrespective of the number of C=C dou-
ble bonds,46 as well as its successful application in investigating
the stability of high Al-doped Li1.22Ru0.61Ni0.11Al0.06O2 at a high
voltage.47

MLPs have shown promising applications in atomic simula-
tions, but constructing a reliable MLP for a specific system can
be quite challenging. A critical step in developing a MLP is col-
lecting a representative set of reference data that establishes the
MLP’s reliability and applicability range.48–53 Typically, ab initio
molecular dynamic (AIMD) simulations are used to generate these
reference data.54–59 Metadynamics and other techniques may be
employed to enhance configuration sampling.60–63 Alternatively,
a more efficient approach involves generating large sets of con-
figurations that cover various distinct regions using less-accurate,
cost-effective calculations. These configurations can then be sub-
sampled to produce a smaller dataset for high-level calculations,
an approach known as delta learning. However, inefficient refer-
ence data can cause model failure. Additionally, generating reference
data requires high-level calculations, and an excessive number of
redundant atomic structures in the reference configurations can
increase computational costs and potentially bias the model.64–67 On
the other hand, regardless of various ML-algorithms, the training
data determine the stability and application scope of the generated
model. Since MLFF algorithms can only be trained on a limited
dataset, a balance between data sampling completeness and comput-
ing resources is a key issue in the development of MLPs. Therefore, it
is valuable to have an effective prescreening approach for the selec-
tion of representative configurations before performing high-level
calculations.

Various methods have been proposed to select representa-
tive data, aiming to minimize redundancy and effectively cap-
ture the diversity of the reference data.68–71 Random selection
(RS) is a widely employed approach due to its convenience and
efficiency.27,70–79 However, it often leads to an imbalanced distri-
bution of data across configuration space. To address the omis-
sion of certain structures, active learning-based approaches with
uncertainty quantifications have been suggested.80–83 These meth-
ods are typically tailored to the specific simulation of interest
and require on-the-fly training of model ensembles with the addi-
tion of new data structures. Additionally, their performance can
be influenced by the choice of the uncertainty quantification
method.

Alternatively, a more logical and practical approach to reduce
data redundancy is to measure the atomic configurational similar-
ity. One common technique for structure selection is to consider
non-linear dependencies between structural features, using meth-
ods such as clustering27,70 or farthest point sampling (FPS).69,84

Clustering involves partitioning the reference data into multiple
clusters in a feature space based on the Euclidean distance or the

kernel ridge regression (KRR) distances,85 followed by selecting
a portion of data from each cluster. This method is sensitive to
various factors, including the number of clusters, the fingerprint
scaling method, and the ordering of the data within clusters. In
contrast, FPS involves fewer parameters to determine in the initial
stage. It begins by selecting an initial data point and then chooses
the point with the farthest distance relative to the already selected
points until a specific number of data points are obtained. FPS has
been widely employed in constructing training data for machine-
learning applications. Nevertheless, its performance hinges on a
predetermined number of structures for selection and exhibiting
instability when applied to the development of the MLPs. Notably,
the computational cost escalates with the number of structures.
Despite the existence of numerous algorithms for data reduction,
there remains a demand for the development of robust methods
with high computational efficiency for the selection of representative
structures.

In this study, we describe a prescreening approach to select
representative atomic structures from pre-generated datasets. We
apply our algorithm to a Ge system and a Pd13H2 nanoparticle
system and demonstrate that our algorithm effectively reduces the
size of the training dataset without a loss of accuracy of the MLP
model. We also evaluate the performance variation of the algo-
rithm with a threshold value, which is used to distinguish the local
environments of two atoms. Our algorithm demonstrates robust-
ness and a higher computational efficiency when compared to the
FPS method.

II. COMPUTATIONAL DETAILS
A. Local-environment-guided screening algorithm
for structure selection

The ANN method employs an independent neural network for
each element to learn the contributions of each atom and its neigh-
bors and then sums the contributions over all the atoms to obtain
the total energy of the system. The representation of the local envi-
ronment around each central atom due to its neighbors determines
the reliability and applicability range of the trained MLP model.
Inspired by this, we developed a local-environment-guided screen-
ing algorithm for structure selection. The core of this algorithm is
to treat each atomic local environment independently, yet appreci-
ate the diversity of atomic environments across different structures.
In general, two different structures can have many atoms that share
similar local environments within the respective structures, yet there
may still be many atoms that have different local environments.
We employed the Behler–Parrinello (BP) symmetry function to
describe the local environment of each central atom. Specifically, the
local environment of atom i is defined as Gi = [Gi,1, Gi,2, . . . , Gi,n]
when n BP symmetry functions are employed for atom i. To
evaluate the dissimilarity between two local environments, the
Euclidean distance between two fingerprint vectors is defined
as follows:

d(Gi, Gj) =
���� n�

k=1
�Gi,k −Gj,k�2. (1)
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FIG. 1. Flowchart of the local-environment-guided selection algorithm.

Figure 1 shows the flowchart of the local-environment-guided
screening algorithm. Here, we assume that a database of atomic
structures is generated in advance, which can be achieved via various
techniques, such as classical MD simulations, manual construction,
and derivation from known chemical databases. In this algorithm,
two banks, namely the local environment and training data banks,
are defined to collect unique local environments and representative
structures, respectively. The local environment bank (LE-bank) con-
sists of a set of fingerprint vectors. It can be initialized by randomly
selecting one fingerprint vector from the structure database. For
each atom (i) in a specific structure, the Euclidean distances between
its fingerprint vector and those stored in the local environment
bank are calculated. The minimum Euclidean distance [di,min(Gi)] is
determined to describe the similarity between the local environment
of this atom and those stored in the bank [see Eq. (2)]. A unique
local environment is identified when di,min is larger than a pre-
defined threshold value (dth). The structure with a unique local envi-
ronment is considered as a representative structure to be included in
the training data bank,

di,min(Gi) = min
Gk∈LE_Bank

�d(Gi, GLE−bank
j )�. (2)

A step-by-step illustration of the algorithm is given in the
following:

Step 1. Select a new structure (S) from the structure database.
Step 2. Calculate fingerprints for structure S.
Step 3. Calculate di,min(Gi) for atom i in structure S with Eq. (2).
Step 4. Determine if di,min(Gi) > Threshold and if so, update the

local environment bank with the fingerprint vector Gi. In
addition, update the training data bank if structure S has
not been included yet.

Step 5. Check if all atoms in structure S have been considered. If
not, repeat Step 3 to 5; if yes, go to Step 6.

Step 6. Check if all structures in the original dataset have been
considered. If not, repeat Step 1 to 6. If yes, end the pro-
gram and output all selected structures in the training data
bank.

B. Reference data
We used a Ge system and a Pd13H2 nanoparticle system as

application examples to demonstrate the effectiveness of our algo-
rithm for MLP training. The Pd13H2 dataset was collected from our
previous study, which contains 19 802 atomic structures.30 The Ge
dataset was derived from the Si dataset reported by Bartók et al.48 We
transferred the atomic structures from the Si dataset to Ge atomic
structures by expanding the lattice cell at the ratio of Ge–Ge and
Si–Si equilibrium bond lengths. To enhance the diversity of local
atomic environments, we additionally expanded or compressed the

J. Chem. Phys. 160, 074109 (2024); doi: 10.1063/5.0187892 160, 074109-3

Published under an exclusive license by AIP Publishing

 25 M
arch 2024 22:40:01

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

obtained Ge atomic structures by a factor of 0.8–1.5 from the Ge–Ge
equilibrium bond length. This process yielded a total of 7092 atomic
structures for the Ge system, including bulk, surface configurations
and crystalline and amorphous crystal phases.

The reference energies and forces of the Ge system were cal-
culated by the density functional theory (DFT) method, as imple-
mented in the Vienna Ab initio Simulation Package (VASP). The
projected augmented wave method and a plane wave basis set
with an energy cutoff of 500 eV were employed to represent
the core–valence electron interactions. The generalized gradient
approximation with the Perdew–Burke–Ernzerhof functional was
used to describe electronic exchange–correlation interactions. An
automatic k-point generation scheme was employed, and the num-
ber of k-points was set to ensure that its multiplication with the
lattice constant was greater than 20 Å.

C. Atom-centered neural network model
We used the ANN algorithm as implemented in the Python-

based atom-centered machine-learning force field (PyAMFF) pack-
age86 to fit machine-learning potentials for the Ge and Pd13H2
systems. The ANN algorithm interprets atomic structures using
atom-centered symmetry functions to represent the local atomic
environments, commonly referred as to structural fingerprints Gi, j .
Neural network models were developed to describe the relation
between the structural fingerprints and the reference energy of the
structure. The total energy of the structure is the sum of atomic ener-
gies (Ei), which has the following functional form (assuming a NN
model with one hidden layer):

Ei =�
k

w12
k1 ⋅ f 1

k
�
��j

w01
jk ⋅Gi,j + b1

k
�
� + b2

1, (3)

where w01
jk represents the weight connecting node j in layer 0 and

node k in layer 1. In addition, b1
k and f 1

k are the bias and activa-
tion function of node k in layer 1, respectively. Note that layer 0
represents the input layer and layer 2 is the output layer.

In this study, we used modified BP symmetry functions to
describe the atomic local environments. The radial (GII

i ) and angular
(GI

i ) terms were constructed with the following equations:

GI
i = all�

j≠i
e
−η
�Rij−Rs�2

R2
c fc(Rij), (4)

GII
i = 21−ζ

all�
j, k ≠ i
j ≠ k

(1 + λ cos (θijk − θs))ζ

× e
−η
�R2

i j+R2
ik+R2

jk�
R2

c fc(Rij) fc(Rik) fc�Rjk�, (5)

where Rij is the distance between the central atom i and the neigh-
boring atom j. Here, η and ζ are the widths of the Gaussian basis
and the angular resolution, respectively, whereas Rs and θs are the
position offsets of the radial and angular distributions of all neigh-
boring atoms within the cutoff radius Rc, respectively. The value of

λ is ±1 and fc(Rij) is a switching function [Eq. (6)] that transitions
smoothly to zero at a cutoff radius, Rc,

fc(Rij) =
���������

0.5 ⋅ �cos�πRij

Rc
� + 1� for Rij ≤ Rc,

0 for Rij > Rc.
(6)

For the Ge system, we adopted 24 GI
i functions and 16 GII

i
functions. For the Pd13H2 nanoparticle system, we adopted 36 GI

i
functions and 12 GII

i functions (see details in the supplementary
material). Note that our focus is not to develop general MLP mod-
els for these systems. A larger training dataset will be necessary to
develop MLP models that are accurate beyond the limited training
set that we have used here.

III. RESULTS AND DISCUSSION
A. Performance test on the Ge system

First, we chose a single-element Ge system to evaluate the effi-
ciency of our algorithm for structure selection. We systematically
varied the threshold value (TGe) from 0.1 to 0.45 with an interval
of 0.025 and monitored the corresponding changes in the num-
ber of structures and atoms within the selected structures. During
initialization, we randomly selected one feature vector from the
dataset and added its corresponding structure to the training data
bank. The screening process of representative structures may vary
depending on the initialization procedure. We performed a series
of experiments to assess the impact of this factor on the algorithm’s
performance. Specifically, we conducted 50 independent screening
processes by randomly shuffling the original dataset to generate 50
sets of training images and calculated the average number of the
selected images and atoms at each TGe.

Figure 2(a) shows the variation of the average number of
selected images and atoms in the selected training data bank with
TGe. The original dataset consists of 7506 Ge structures (correspond-
ing to TGe = 0.0), including a total of 707 440 atoms in bulk, slabs,
nanowires, and the liquid phase. The number of images and the
number of atoms exhibit similar dependencies on the threshold
value. As TGe increased, the number of images and the total number
of atoms included in the training data bank decreased monotoni-
cally. For example, at the threshold value of 0.1, we screened out
4238 representative structures, including 465 108 atoms. When the
threshold value was 0.275, the number of representative structures
decreased to 1,264, including 134 882 atoms. Figures 2(c) and 2(d)
show the distribution of percentage errors of the structures and
atoms in the training data bank obtained from 50 independent selec-
tions at TGe = 0.275, conforming to a normal distribution with a
small variance.

To assess the effectiveness of our algorithm in selecting local
environments, we analyzed the distribution of symmetry functions
at specific values of TGe (0.0, 0.275, and 0.45). The results of this
analysis are presented in Figs. 2(b) and S1. To illustrate this analy-
sis, we take the distribution of the second radial symmetry function
(GI

2) as an example, as shown in Fig. 2(b). Initially, when consid-
ering the dataset selected at TGe = 0.0, the distribution of GI

2 was
found to be highly concentrated between 0.0 and 0.2; only a small
portion of the distribution extended beyond 0.2. As TGe increased,
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FIG. 2. (a) The number of structures and atoms in the training data bank as a function of the threshold value (TGe) employed in the structure screening process. (b) Distribution
of the second radial symmetry function (GI

2) for training images selected at TGe = 0.0, 0.275, 0.45. (c) Violin plot showing the percentage error distribution in the number of
structures and atoms in the training data bank obtained from 50 independent runs at TGe = 0.275.

the algorithm screened out structures with similar local environ-
ments. This screening process led to a decrease in the population
of GI

2 within the range of 0.0 to 0.2. Simultaneously, the population
of local environments with GI

2 > 0.2 increased, resulting in a more
uniform distribution of GI

2 from 0 to 1.0 for the selected dataset.
Notably, TGe = 0.275 exhibits a Gaussian-like distribution with a
peak value of GI

2 = 0.3. However, when TGe was further increased,
the algorithm gradually overly screened out local environments,
leading to many discontinuous breakpoints between 0.0 and 1.0.
This discontinuity indicates that certain local environments were
excessively filtered out. Nonetheless, our algorithm effectively mod-
ulates the distribution of local environments by adjusting the thresh-
old value used to determine the dissimilarity between two local
environments.

After selecting structures at different threshold values, we pro-
ceeded to assess the performance of the trained force field. For each
threshold value, we used the selected structures as the training set
to develop a machine-learning force field. We subsequently utilized
this force field model to predict the energy and force of the original
dataset and calculated the RMSE (denoted as the prediction set). To
ensure the robustness of our findings, we repeated the entire pro-
cess for each threshold value using 50 sets of training data obtained

from independent screening processes. Figures 3(a) and 3(b) show
the variation of average RMSEs of the energy and force as a func-
tion of TGe. For reference, the training RMSEs obtained from the
model developed on all structures within the original dataset are
represented by the dashed line.

As shown in Figs. 3(a) and 3(b), the energy and force RMSEs
exhibit a similar trend in relation to the threshold value. The energy
RMSE for the training set consistently decreases as the threshold
value increases due to a reduction in training data. Conversely, the
energy RMSE for the prediction set gradually increases with higher
threshold values, which can be attributed to the sparsity of the train-
ing data and negatively impacts the predictive performance of the
trained model. For example, the observed discontinuity in the dis-
tribution of GI

2 for the dataset selected at TGe = 0.45 suggests the loss
of certain local environments. The model trained on such datasets
exhibits an inferior prediction performance on the structures that
contain missing local environments. Regarding the force RMSEs, a
deviation is observed at TGe > 0.275. As TGe increases from 0.275,
on average, the prediction performance of the MLP starts to quickly
deteriorate [Figs. 3(a) and 3(b)]. Furthermore, the variance in the
prediction performance, for both energy and forces, also rises. There
is no significant performance sacrifice for the MLP model devel-
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FIG. 3. Variation of (a) energy and (b) force RMSEs for training (red) and prediction (blue) datasets with the threshold value (TGe) employed in the structure screening
process. Violin plots illustrating the distribution of (c) energy and (d) force RMSEs obtained from 50 independent runs with training images selected at TGe = 0.275. The red
and blue colors represent the corresponding distribution for the training and prediction datasets, respectively.

oped when TGe ≤ 0.275 (Fig. S2). We also note that the variance in
both the energy and force RMSEs, in this region (TGe ≤ 0.275), is
smaller.

Based on these findings, we identified a threshold TGe value of
0.275. At this threshold, 1264 structures with 134 882 atoms were
selected, which is less than 20% of the original dataset. The MLP at
this threshold value has energy and force RMSEs of 9.78 meV/atom
and 87.4 meV/Å, respectively, comparable to 7.88 meV/atom and
72.8 meV/Å obtained by the MLP model trained with the original
dataset. Figures 3(c) and 3(d) show the distribution of the energy and
force RMSEs obtained from the model developed with TGe = 0.275.
Both energy and force RMSEs for the training and prediction follow
normal distributions with a small variance. The significant reduction
in the number of atomic structures in the training data improves the
training process.

B. Performance test with the Pd13H2 nanoparticle
system

We have successfully demonstrated the effectiveness of our
algorithm in selecting representative structures for the Ge system.
To further validate the universality of the algorithm, we conducted a

performance test using a two-element system: a Pd13H2 nanopar-
ticle system, for which we have reported a well-established MLP
model with optimized fingerprints. Here, we employed two thresh-
old values, namely TPd and TH , to treat the local environments of
Pd and H separately. Utilizing a grid search method, we explored
the variation in the number of selected structures with different TPd
and TH . The results presented in Fig. 4 clearly show the depen-
dence of the total number of structures selected on both TPd and
TH . We observed a continuous decrease in the total number of
selected structures as both TPd and TH increased, which shows
that the algorithm effectively modulates the number of selected
structures.

We employed the same procedure used for the Ge system to
develop an MLP model with selected structures at each TPd and
TH values and calculated the energy and force RMSEs for both the
training and prediction datasets. Figure 5 shows contour maps illus-
trating the variations of energy and force RMSEs with TPd and TH
for both training and prediction datasets. For reference, an energy
RMSE of 8.6 meV/atom and a force RMSE of 100 meV/Å from the
MLP model trained with the original dataset (no screening process
was performed) are labeled in the contour map. The energy RMSE
follows a similar trend as observed in the Ge system. In the train-
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FIG. 4. Number of structures and atoms in the training data bank as a function of
the threshold values (TPd and TH) employed in the structure screening process.

ing set, the largest RMSE is found in the left-bottom corner with
small TPd and TH values, and the smallest RMSE is observed in the
right-top corner associated with large TPd and TH values [Fig. 5(a)],
indicating that a reduction in training data leads to better conver-
gence of the model. This situation is reversed in the prediction set
due to the loss of certain local environments at high TPd and TH val-
ues [Fig. 5(b)]. Note that the performance of the ML model is less
sensitive to the TH parameter when TPd is small, which is attributed
to the fact that the H–H interaction becomes negligible beyond a
distance of 1.5 Å.

The force RMSE in the training set exhibits a small variation
with threshold values, typically in a range of 10 meV/Å [Fig. 5(c)].
However, in the prediction set, we observe an increase in the force
RMSE from the left-bottom to the right-top corner, following the
diagonal line [Fig. 5(d)]. This trend follows what we observed in the
Ge system. Based on this variation trend, we identified a critical line
(yellow dotted line) in Fig. 5(d) that denotes the suitable TPd and
TH values for filtering representative structures in the development
of the MLP model for the Pd13H2 system. The MLP model devel-
oped using structures selected along the critical line demonstrates a
performance comparable to that achieved with the model obtained
from the original dataset (Fig. S3). A further increase in the TPd and
TH values result in a significantly inferior performance of the MLP
model in terms of prediction accuracy. These findings show that a
selection of 4000 representative structures along the critical line is
sufficient to capture the characteristic information contained in the
original dataset of 19 802 structures, underscoring the importance of
preprocessing the dataset.

C. Comparison with FPS and clustering algorithms
To evaluate the efficiency of our algorithm in selecting rep-

resentative structures, we compared our method with the furthest
point sampling (FPS) method and the clustering algorithm, both of
which are widely used methods for extracting representative data

from a database. FPS relies on the definition of the similarity between
atomic structures. In this study, we utilized both the average struc-
tural kernel (Avg-kernel) and the regularized entropy match kernel
(REMatch-kernel) as defined in Ref. 68 to assess structural similarity.
We computed the structural similarity matrix (K) using the DScribe
package,87 which is based on SOAP descriptors. For Avg-kernel and
REMatch-kernel, we set the number of radial basis functions (RBFs)
and the maximum degree of spherical harmonic functions to 4 and
3, respectively, (denoted as 4,3-SOAP). This choice ensures that the
number of SOAP and the number of BP symmetric functions are
equal. It is worth noting that a further increase in the number of
RBFs and the maximum degree of spherical harmonics does not
yield improvement in the performance (Fig. S4). Other input set-
tings were left at their default values. Subsequently, the similarity
matrix was used to determine the distance between each pair of
structures (d̃(A, B)),

d̃(A, B) =�2 − 2 × K(A, B). (7)

The agglomerative clustering algorithm implemented in the
Scikit-learn package88 was used to divide the dataset into a given
number of clusters based on structure similarity. A random struc-
ture was selected from each cluster as a representative structure. We
used the same BP symmetry functions as described in Sec. III A and
utilized the structure global descriptor [ϕ (A)] defined in Eq. (8) to
represent the global features of structures.69 The Euclidean distance
between two structures was used to evaluate the similarity of two
structures,

ϕ(A) =
n∑
i

Gi

n
(n is the number of atoms in Structure A). (8)

In the FPS, the first two data points were determined using
the algorithm detailed in Ref. 84. The FPS process was iterated
until a predetermined number of structures had been chosen. The
machine-learning force field trained with the selected structures was
employed to compute the RMSEs for energy and force within the
prediction datasets. Figure 6 shows the variation of the RMSE values
for energy and force with the number of structures selected for the
Ge system. For the PdH system, a comparison between the cluster
algorithm and our approach is presented in Fig. S5. Additionally, we
also conducted a comparison of our algorithm with the CUR decom-
position method, which exhibits an inferior performance for both
the Ge and PdH systems (see details in Fig. S6 and Part II of the
supplementary material).

As shown in Fig. 6, our algorithm demonstrates a superior
performance in both accuracy and robustness compared to the
FPS method. When selecting the same number of structures, the
machine-learning model generated with our method exhibits com-
parable RMSE values in energy and lower RMSE values in force
[Figs. 6(a) and 6(b)]. Moreover, the FPS method exhibits a notice-
able fluctuation in RMSE values for both energy and force [blue
and orange lines in Figs. 6(a) and 6(b)], indicating its instabil-
ity. The clustering algorithm [green lines in Figs. 6(a) and 6(b)]
exhibits an improved performance in both accuracy and robustness
compared to FPS methods, yet slightly inferior than our algorithm
for the Ge system. However, a larger variation is observed in the
PdH system (Fig. S5). These findings indicate that our algorithm

J. Chem. Phys. 160, 074109 (2024); doi: 10.1063/5.0187892 160, 074109-7

Published under an exclusive license by AIP Publishing

 25 M
arch 2024 22:40:01

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 5. (a) and (b) Contour plots of energy RMSE as a function of the threshold values TPd and TH for (a) training and (b) prediction datasets. (c) and (d) Contour plots of
force RMSE as a function of TPd and TH for (c) training and (d) prediction datasets.

is more effective in capturing the correlations within the high-
dimensional space, whereas the FPS and clustering algorithms,
relying on the global features, shows limitation in handling the
intricacies of the data. This limitation can be attributed to the
loss of local details during the construction of the global similarity
matrix.

We compared the computational efficiency of our algorithm
with the Avg-kernel FPS, the REMatch-kernel FPS, and the clus-
tering algorithm. Figure 6(c) shows a correlation between the com-
putation cost and the number of representative structures selected
using the Avg-kernel FPS, the REMatch-kernel FPS, the clustering
algorithm, and our algorithm. Our algorithm offers a substantial
reduction in computational cost when compared to both FPS meth-
ods. This efficiency can be further enhanced through the utilization
of matrix operations with PyTorch tensors, making it compara-
ble with the clustering algorithm. For example, when the number
of sampling structures is set to 1264 (the critical point identified
by our algorithm), the Avg-kernel FPS and the REMatch-kernel
FPS methods require 14 648 and 17 800 s, respectively, with 97% of
the cost attributed to the construction of the similarity matrix. In
contrast, our algorithm using NumPy takes only 1859 s. By using
PyTorch for matrix operations, the computational cost can be fur-

ther lowered to 55 s, and it exhibits a near-linear dependency on
the number of sampling structures, making it suitable for large
datasets.

The efficiency of our algorithm stems from its focus on main-
taining a local environment bank during the selection process,
effectively excluding non-representative local environments from
subsequent calculations. The computational complexity of our algo-
rithm is expressed as O(mnN), where “m,” “n,” and “N” represent
the number of local environments in the bank, the number of atoms
in a structure, and the number of structures in the dataset, respec-
tively. It is important to note that if no local environment were
excluded, m is equal to nN and it decreases when more local envi-
ronments are excluded. This implies that the computational cost
decreases as more structures are excluded, as observed in Fig. 6(c).
In contrast, the construction of a global similarity matrix for the
FPS algorithm requires computing similarities between every pair of
two atoms in two structures, leading to a significantly higher com-
plexity of O(N2n2) compared to the O(mnN) complexity of our
approach.

While our algorithm significantly reduces computational com-
plexity, it currently does not demonstrate linear scaling with the
number of sampled structures and it could face computational
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FIG. 6. Variation of (a) energy and (b) force RMSEs in prediction datasets with the number of selected structures, obtained through our algorithm (red), the Avg-kernel FPS
(blue), the clustering algorithm (green), and the REMatch-kernel FPS (orange). (c) Variation of execution time with the number of selected structures for all four algorithms
(tested on a Xeon Platinum 8160 CPU using 1 CPU core). Note that the time used for the computation of SOAP and BP symmetry function was not included.

challenges when dealing with a massive number of selected local
environments (fingerprint vectors in the local environment bank).
Implementing a grouping mechanism for these fingerprint vectors
could be a viable strategy to further improve the computational
efficiency. Furthermore, considering a sequential combination of
the clustering algorithm with our approach might offer an alterna-
tive to improve the efficiency, while upholding high accuracy and
robustness.

IV. CONCLUSIONS
In this study, we developed a training data selection algorithm

based on a local-environment bank, which stores high-dimensional
vectors representing the local environments of atoms. The algorithm
utilizes a threshold value to assess the similarity between two local
environments. A new local environment is identified when it has a
larger-than-threshold Euclidean distance relative to all those present
in the bank. The corresponding structure is then selected as the new
structure. We applied this algorithm recursively to select structures
from a database of atomic structures, for the Ge and Pd13H2 sys-
tems, respectively. Our results show that the performance of the
MLP model highly depends on the threshold value employed in
the screening process. By identifying a suitable threshold value, we
significantly reduced the training data size, while maintaining the
performance of the MLP model. Specifically, the training data were
reduced from 7506 to 1264 structures for the Ge system and from
19 802 to 4000 structures for the Pd13H2 system. This reduction
significantly improves the training efficiency of the MLP without
sacrificing the accuracy. Furthermore, we verified the generality of
this algorithm, demonstrating that the results are independent of
the selection and ordering of the initial structures. Our algorithm
also exhibits a superior performance when compared to the perfor-
mances of FPS and the clustering method. These results enhance our
understanding of how the performance of the MLP model relies on
the training data and potentially expedite the development of ML
potentials.

In our algorithm, the local environment bank can be dynam-
ically updated without re-evaluating the training data bank in real
time. This capability holds promise as an efficient data storage mech-
anism for constructing accurate machine learning potentials. The
effective threshold measures distances within the high-dimensional
vector space of the structural configurations. Further investigation
into system dependency could enhance the generalizability of our
algorithm and aid in uncertainty estimation of the MLP model. Nev-
ertheless, in its current version, users will need a pre-determined
dataset and an appropriate threshold, which may pose a challenge
to applying our algorithm. This challenge is also a common issue in
this field and requires resolution. Additionally, our algorithm solely
focuses on representatives of local environments within a specific
cutoff, excluding global features. As a result, it may not be suit-
able for cases where global features significantly impact the MLP
accuracy.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details about
parameters used for MLP development, distributions of symme-
try functions, and a comparison of predicted energies and forces
with reference DFT values. Codes for the FPS, CUR decompo-
sition, clustering algorithms, and the local-environment-guided
selected algorithm can be found at GitHub (https://gitlab.com/Li-
Renzhe/pyimg).
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