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ABSTRACT
Atom-centered neural network (ANN) potentials have shown promise in computational simulations and are recognized as both efficient
and sufficiently accurate to describe systems involving bond formation and breaking. A key step in the development of ANN potentials is
to represent atomic coordinates as suitable inputs for a neural network, commonly described as fingerprints. The accuracy and efficiency of
the ANN potentials depend strongly on the selection of these fingerprints. Here, we propose an optimization strategy of atomic fingerprints
to improve the performance of ANN potentials. Specifically, a set of fingerprints is optimized to fit a set of pre-selected template functions
in the f ∗g space, where f and g are the fingerprint and the pair distribution function for each type of interatomic interaction (e.g., a pair
or 3-body). With such an optimization strategy, we have developed an ANN potential for the Pd13H2 nanoparticle system that exhibits a
significant improvement to the one based upon standard template functions. We further demonstrate that the ANN potential can be used
with the adaptive kinetic Monte Carlo method, which has strict requirements for the smoothness of the potential. The algorithm proposed
here facilitates the development of better ANN potentials, which can broaden their application in computational simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007391., s

I. INTRODUCTION

Atomic simulation approaches based on quantum mechan-
ics, empirical interatomic potentials, or classical force fields have
demonstrated a remarkable power in gaining chemical and physical
insights and providing guidance for the design of novel materials.
Quantum mechanical methods, primarily based on density func-
tional theory (DFT), offer sufficient accuracy for the simulation of
chemical process and prediction of material properties. However,
the computational cost of such methods remains high, which lim-
its their application in large systems containing hundreds of atoms
and where extensive sampling is required. Relatively inexpensive
methods based on classical force fields are capable of modeling sys-
tems with thousands or even millions of atoms. However, classical

force fields are carefully parameterized to a specific chemical envi-
ronment and suffer from a lack of transferability. In recent decades,
machine learning (ML) algorithms have been introduced to describe
interatomic interactions by fitting the potential energy surface with
reference data obtained from quantum mechanical calculations.1–7

ML potentials have been demonstrated to have DFT-level accuracy
and orders of magnitude lower computational cost and show appli-
cability to chemical and material systems involving bond formation
and breaking.8–10

Until now, various ML techniques have been introduced for
atomic simulation, including artificial neural networks (NNs),11–16

kernel-ridge regression,1,17–19 and Gaussian process regression.20–22

A key step in these techniques is to represent the atomic geome-
tries with descriptors that are invariant to the operation of rotation
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and translation so as to preserve the intrinsic symmetries of the sys-
tem. Such descriptors, commonly described as atomic fingerprints,
are designed to reflect the unique features of each geometric struc-
ture. Several different fingerprint algorithms have been developed,
i.e., atom-centered symmetry functions (ACSFs),11 the smooth over-
lap of atomic positions (SOAP),23 bispectrum fingerprints,20 and
Zernike fingerprints.24 The parameters in these fingerprints are
boundless and able to form infinite dimensional vectors. Theoreti-
cally, the more complete the fingerprints, the higher accuracy can be
reached, but at the expense of a higher computational cost. There-
fore, an optimal selection of fingerprint parameters is essential to
the performance of ML techniques.

In this work, we present a simple but effective algorithm for
selecting fingerprint functions without relying on pre-training of
the ML potential. The fingerprints we use here are based upon
the ACSFs proposed by Behler and Parrinello (denoted as BP fin-
gerprints).11 The BP fingerprints have been widely used for the
construction of atom-centered neural network (ANN) potentials
that have a broad applicability across the periodic table and are
able to provide accuracy comparable with the methods used to
construct the reference data. Here, we first evaluate the perfor-
mance of the ANN technique by fitting the potential energy sur-
face of a 7-atom Lennard-Jones (LJ7) particle and determine how
the accuracy of the model varies with the set of BP fingerprints.
Inspired by the LJ7 particle case, we developed an algorithm to opti-
mize the BP fingerprints to improve the performance of the ANN
model.

To test our algorithm, we have fit forces and energies from
DFT calculations of a Pd13H2 nanoparticle (NP) with the ANN tech-
nique. The PdH system is of interest in various areas, including
hydrogen storage,25,26 hydrogen separation membranes,27 hydrocar-
bon reforming,28–31 etc. Many scientific issues, i.e., the reactivity
and dynamics of PdH nanoparticles, are important for these rele-
vant applications. Here, we choose to model the dynamics of a PdH
NP over long time scales using the adaptive kinetic Monte Carlo
(AKMC) method.32,33 In our tests, we have not been able to find a
force field with even qualitative agreement with forces and energies
from DFT for these PdH NPs. Thus, here, we developed an ANN
model for the Pd13H2 NP system and used AKMC to understand the
time scales of the dynamics of the PdH NPs.

II. COMPUTATIONAL DETAILS
A. Atom-centered neural-network model

We used the TensorFlow version of the ANN algorithm imple-
mented in the Atomistic Machine-Learning Package (AMP) devel-
oped by Khorshidi and Peterson for ML potential fitting.34 As shown
in Scheme 1, the ANN algorithm first interprets the structural infor-
mation into unique fingerprints by representing the atomic con-
figurations as single-atom chemical environments with generalized
numerical representations. Here, we applied modified BP finger-
prints of radial (f Ii ) and angular (f IIi ) forms, with centers at Rs and
θs, respectively,

f Ii =
all

∑
j≠i

e
−η
(Rij−Rs)

R2
c

2

fc(Rij)

f IIi = 21−ζ
all
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0.5 ⋅ [cos(
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Rc
) + 1] for Rij ≤ Rc

0 for Rij > Rc.

We set the cutoff radius (Rc) as 3.0 Å and 6.0 Å for the LJ7
and Pd13H2 particle system, respectively. The parameters η and
ζ are used to control the radial and angular fingerprint widths,
respectively. For example, a larger η (ζ) value yields a narrower
distribution of the radial (angular) symmetry function. A set of sym-
metry functions with different η and ζ values is required to describe
the chemical environment of each atomic center. The numerical
representations generated were weighted through an (n, m) NN
model. Here, the length of the tuple (n, m) represents the num-
ber of hidden layers in the NN model with n and m correspond-
ing to the number of neurons in each hidden layer. In this study,
a (5) and a (50) NN model was used for the LJ7 and Pd13H2

SCHEME 1. Flow chart of the atom-
centered neural-network model. f i , j rep-
resents the jth fingerprint centered at the
ith atom. w, Nf , N, and M represent the
weight of the neural-network model, the
number of fingerprints, atoms, and struc-
tures, respectively. Ei and F i are the
energy and force of the ith atom.
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particle system, respectively. This corresponds to a NN model with
one single hidden layer consisting of 5 or 50 neurons. Each neuron
uses an activation function (the sigmoid function is selected here)
to transform its input values to the output value. The output atomic
energies and forces are evaluated with a loss function as defined in
Scheme 1. The weights connecting each layer were initialized from
a standard normal distribution and then optimized to minimize the
loss function with the Limited-Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm. Finally, the resulting ANN model was used as
a LAMMPS (Large-scale Atomic/Molecular Massively Parallel Sim-
ulator) force field through the OpenKIM module (refer to Part II of
the supplementary material for more details).35

B. Data collection
For the Pd13H2 particle, high-temperature molecular dynamics

(high-T MD) simulations followed by geometry optimization (GEO-
OPT) and saddle-point searching based on the dimer method were
performed to obtain reference data.36–38 In the high-T MD/GEO-
OPT simulations, we first ran three independent MD simulations
with an NVT ensemble and the temperature fixed at 1000 K to pro-
duce high-energy structures. Each MD simulation ran for 20 ps with
a time step of 1 fs. In this step, we used Gaussian and plane-wave
basis functions with the PBE functional as implemented in the CP2K
package.39 A small single-ζ Gaussian basis set and the Goedecker–
Teter–Hutter norm-conserved pseudopotentials were used to treat
valence and the core electrons, respectively.40,41 The energy cutoffs
for the finest grid level and Gaussian wavefunctions were set as 250
Ry and 30 Ry, respectively. Next, the fast inertial relaxation engine
(FIRE) optimizer, as coded in the atomic simulation environment
(ASE), was used to optimize the high-energy structures; 40 struc-
tures were collected along each optimization.42 Additional structures
were also included to describe the chemical environments that were
not found in either the dimer saddle search or high-T MD/GEO-
OPT simulations. Specifically, geometries for the dissociation of the
H2 molecule and H atoms embedding inside the Pd13 NP were also
included. The data collected from each method was randomly split
into training and testing sets in the ratio of 4:1 (Table I).

The reference energies and forces for the Pd13H2 NPs were eval-
uated with DFT as implemented in the Vienna ab initio simulation
package (VASP 5.4.4). Projected augmented wave based pseudopo-
tentials and a plane-wave basis set with an energy cutoff of 300 eV
were employed to treat the core and the valence electrons, respec-
tively.43–45 The generalized gradient approximation with the PBE
functional was selected to calculate the exchange–correlation inter-
action.46 A 15 × 15 × 15 Å3 cell was used to avoid interaction from
neighboring particles. Note that the force field developed here was
fit to the hydride system and is not expected to be transferrable even

TABLE I. Number of structures used for training and testing the ANN model in each
category.

Embedded
Categories MD/GEO-OPT Dimer H2 dissociation H atom

Training 5414 6312 1213 6863
Testing 1354 1578 304 1716

to similar systems such as Pd13 with molecular H2. In fact, tests show
that the ANN is qualitatively different from DFT for recombinative
H2 desorption from Pd13 (gray areas shown in Fig. S1). This discrep-
ancy is due to the lack of training data in those regions. The objective
here, however, is not to develop a general PdH potential; rather, it is
to develop a strategy to optimize fingerprints and demonstrate the
feasibility of combining an ANN model with the AKMC algorithm.

III. RESULTS AND DISCUSSION
A. PES fitting of the LJ7 particle

First, we selected a simple system, the 7-atom LJ particle, to test
the sensitivity of the ANN model with respect to variations of the
fingerprint functions. We performed a basin-hopping calculation to
locate all local minima of the LJ7 particle and then constructed a dis-
connectivity graph by finding transition states that connect the local
minima using the Pele package.47 Reduced units are used for the
Lennard-Jones potential, which is equivalent to setting the pair equi-
librium well depth (ε) and separation (σ) to 1. The reason to focus on
a disconnectivity graph as a measure of accuracy of the PES is that
we are interested in modeling dynamics where the energy of minima
and saddles are of particular importance. A total of 2609 structures
were selected from the basin-hopping simulation, with 133 being
selected from those with a minimum distance between atoms Rmin
< 1.0, 165 from those with Rmin > 2.5, and 2307 from the rest plus
the four local minima. This set of structures was used to fit the LJ7
PES. The performance of the ANN model was evaluated by com-
paring the calculated ANN disconnectivity graph with that obtained
from the reference LJ potential.

Figure 1(a) shows the disconnectivity graph of the LJ7 parti-
cle obtained from the LJ potential. The LJ7 particle has four local
minima (black dots) that are connected by three unique transition
states (the vertices that connect each pair of local minima). The
red counterpart shows the disconnectivity graph obtained from the
ANN model; note that the red and black plots are so similar that they
appear superimposed on one another. One hidden layer with five
neurons was used in this ANN model. Five radial symmetry func-
tions centered at zero with η = 0.05, 4, 20, 40, 80, and 120 were used
as fingerprints. Note that this set of fingerprints was determined after
numerous trials. We first followed the recommended fingerprints in
Ref. 34 and then varied the interval between η values to find finger-
prints that reproduced the disconnectivity graph of the LJ7 particle.
The near perfect match between the black and red lines indicates a
near perfect agreement of the disconnectivity graph obtained from
the ANN model with that from the LJ potential and that we have
used a suitable set of fingerprints.

To understand the importance of each fingerprint function, we
retrained the ANN model with one fingerprint removed and cal-
culated the difference of the disconnectivity graph between the LJ
potential and the ANN model as the root mean square error

RMSE =

¿
Á
ÁÀ∑

N
i=1 (EANN

i − ELJ
i )

2

N
,

where EANN
i and ELJ

i are the energies of the local minima and saddle
points in the disconnectivity graph from the ANN model and the
LJ potential, respectively, and N is the total number of local minima
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FIG. 1. (a) Disconnectivity graph of the
LJ7 particle obtained from basin-hopping
with the LJ potential (black) and the ANN
model (red). (b) Plot of f (r) g(r) (bot-
tom panel) with different η values and
the RMSE variation of the disconnectivity
graph with a missing η value.

and saddles. If the ANN finds more or fewer critical points than the
LJ potential, the energies of the additional stationary points found
in one model are evaluated in the other without relaxation, to pro-
vide a measure of the difference between the two landscapes in the
RMSE.

The variation of the RMSE with one fingerprint removed is pre-
sented in Fig. 1(b) (top panel). Different sensitivities are observed for
different fingerprints. For example, the removal of the η = 20 finger-
print, corresponding to a mean distance of 1.1, produces the largest
error, suggesting that the ANN model is most sensitive to this fin-
gerprint. In contrast, the ANN model with the η = 0.05 fingerprint
removed, corresponding to a mean distance of 1.5, performs as accu-
rately as with all fingerprints applied. The mean distance mentioned
here corresponds to the center of the f (r)g(r) plot in the bottom
panel of Fig. 1(b). This analysis indicates that the η = 0.05 fingerprint
is redundant for the ANN model. The removal of other fingerprints
had a similar influence on the accuracy of the ANN model, indicat-
ing that only the η = 20 fingerprint is important for accuracy, which
is consistent with modeling a simple pair potential in which the local
energy of an atom is based upon the number of neighbors.

To understand the different sensitivities of the fingerprints, we
computed the product of each fingerprint, f (r), with the pair distri-
bution function, g(r), of the training data [denoted as f (r)g(r)]. To
see this more clearly, an enlarged plot for η = 4 and 20 is shown
in Fig. S2. This product describes how much a specific r value is
weighted in the training data by this fingerprint. Such a measure
helps describe which fingerprint distances are present in the train-
ing data. As shown in the bottom panel in Fig. 1(b), the fingerprints
selected here emphasize the description of various radial distribu-
tions. For example, only one sharp peak centered at the equilibrium
distance (r = 1.1) is found for the η = 20 fingerprint. This indicates
that this fingerprint describes the two-body interaction around the
equilibrium distance of the system and explains why the ANN model
is most sensitive to this fingerprint. In contrast to the η = 20 finger-
print, the plot of the f (r)g(r) with η = 0.05 has almost the same shape
as that of the g(r). Besides the peak at Rij = 1.1, contributions to this
fingerprint from other regions beyond 1.3 are also considerable due

to a significant population of those distances in the training data.
Nevertheless, their contributions to the LJ potential are negligible
compared to those from the region near the equilibrium distance.
In other words, the η = 0.05 fingerprint is unable, on its own, to
correctly describe the interaction near the equilibrium distance due
to the inclusion of contribution from other regions. Therefore, the
removal of the η = 20 fingerprint leads to a large deviation from the
real LJ potential whereas a small error is induced upon removal of
the η = 0.05 fingerprint. These results suggest that to reach a rea-
sonable accuracy for the ANN model, each fingerprint should probe
a specific region of the atom-centered chemical environment. The
product of f (r) and g(r) is potentially a good criterion for the deter-
mination of fingerprints that are distinguishable from each other in
this regard.

B. Fingerprints optimization
A principle for designing an ANN algorithm is to have finger-

prints distinguishable from each other such that each one probes
a specific region of the atom-centered chemical environment. Fol-
lowing this rule, Smith et al developed extensible neural network
potentials for multiple common organic molecules by evenly dis-
tributing the value of Rs and θs with fixed η and ζ values.16 An even
distribution of the fingerprint center guarantees inclusion of all pos-
sible chemical environments to be explored. However, a biased pop-
ulation of a specific type of chemical environments in the training
data will overweight or underweight the corresponding fingerprint,
leading to a poor performance of the ANN model. Following the
sensitivity test of the LJ7 particle, the product of each fingerprint
with the pair distribution function g(r) can be used to determine
how a specific fingerprint is biased in training data. In other words,
we need to find a set of fingerprints that are distinguishable from
each other upon taking the product with the pair distribution func-
tion. This means finding distinguishable fingerprints in the f (r)g(r)
(simplified as f ∗g) space instead of the f (r) space.

Here, we propose an optimization algorithm to find distin-
guishable fingerprints in the f ∗g space and apply the algorithm
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to locate fingerprints for the Pd13H2 nanoparticle system. Fig-
ure 3 presents the pair distribution function and radial finger-
prints near the equilibrium distance for the Pd–H pair before and
after optimization. We first defined a set of template fingerprints

[{f Tpi (r)}i=1,N f
] that describe separate regions in the pair dis-

tribution space to be described. Then, an objective function (τ)
defined by the following equation is minimized to find fingerprints

[{f Opti (r)}i=1,N f
] that reproduce the template in the f ∗g space,

τ =
Nf

∑
i
{∫

Rc

r
α(f Opti (r)g(r) − f

Tp
i (r))

2
dr},

where α is the weight parameter set to ensure that the error in the
tail region is properly weighted. The tail region is defined as that
region where the value of the template fingerprint is smaller than
1/100 of its maximum value. The α value can be determined as the
minimum value that eliminates the error in the tail region. An exam-
ple is shown in Fig. 2, where the tail corresponds to the region with
r > 2.0 Å. A small α leads to mismatch between the optimized and
the temperate fingerprint in this tail region, i.e., the black line (the
optimized fingerprint with α = 1) as compared to the gray-circled
line (the template fingerprint). Increasing the value of α reduces the
mismatch in the tail region and leads to a right shift of the finger-
print center (the Rs value) as shown in the right panel of Fig. 2. The
Rs value reaches a maximum value with α = 100—that is, the mini-
mum α value to be used to eliminate the mismatch in the tail region.
As such, we set α as follows:

α =
⎧⎪⎪
⎨
⎪⎪⎩

1, f Tpi (r = rj) ≥ 0.01 ∗max( f Tpi (r)∣
r=Rc
r=0 )

100, f Tpi (r = rj) < 0.01 ∗max( f Tpi (r)∣
r=Rc
r=0 ).

Three fingerprints with Rs = 1.6, 1.75, and 1.9 Å and η = 1500, as
shown by dashed lines in the middle panel of Fig. 3, are selected
as templates to describe the interactions centered at the respective
Rs value in the f space. The g(r) of the H–Pd pair distribution is
most populated around the first-nearest distance (1.77 Å) as shown

FIG. 2. The right panel shows a plot of fingerprints that are optimized to the tem-
plate functions (the black line) centered at 1.75 Å with different α values. The left
panel shows a plot of the corresponding product with the pair distribution function.

FIG. 3. Plot of the pair distribution function of the H–Pd pair (top panel), the tem-
plate fingerprints (dashed lines in the middle panel), the optimized fingerprints
(solid lines in the middle panel), the f (r)g(r) before (dashed lines in the bottom
panel) and after (solid lines in the bottom panel) optimization. The inset image
presents the evolution of the objective function (τ) with optimization steps. The
dashed vertical lines indicate the radial center of the template fingerprints.

in the top panel of Fig. 3. The strong population bias at the first-
neighbor distance leads to a reduction of the fingerprints in the f ∗g
space toward the peak position of the g(r). The center of these popu-
lated fingerprints (dashed lines in the bottom panel of Fig. 3) ranges
from 1.72 Å to 1.82 Å, much narrower than our target (1.6–1.9 Å).
This indicates that the combination of template fingerprints with our
training data tends to emphasize the interaction in a region close to
the first-nearest neighbor distance (±0.05 Å).

By optimizing the objective function (τ), we shifted the centers
of the populated fingerprints to our target range. The objective func-
tion is continuous and smooth with respect to η and Rs. An example
contour map of τ for the template fingerprint centered at 1.6 Å is
given in Fig. S3. There exists only one critical point, which is the
global minimum. The global minimum of τ can be located in the fast
inertial relaxation engine (FIRE) as shown in the inset image of the
bottom panel in Fig. 3. The fingerprints obtained after optimization
are presented as solid lines in the middle panel of Fig. 3. Com-
pared to the template fingerprints, the two outermost fingerprints
exhibit a similar shape but are shifted away from the first-nearest
distance in order to lower the weight in that region. The coverage of
the middle fingerprint is expanded with a slightly shifted center. As
a result, the optimized fingerprints cover radial regions as defined
by the template in the f ∗g space (solid lines in the bottom panel
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of Fig. 3). To fully describe the Pd–H interaction, another six fin-
gerprints are selected and optimized following the same procedure
(Fig. S4). These fingerprints are expected to improve the descrip-
tion of interactions centered at the target Rs values for the training
data.

C. An improved ANN model with optimized
fingerprints for the Pd13H2 system

Next, we located fingerprints for other interactions following
the proposed optimization procedure, including the H–H, and Pd–
Pd radial, and the Pd–Pd–Pd angular terms. Only the Pd–Pd–Pd
angular term is included given that the angular term with hydro-
gen has little contribution to the system. We followed the exact same
procedure used in the radial term to optimize the angular term. The
template and optimized fingerprints are presented in Figs. S5–S7
and the parameters are included in the attached potential files. To
evaluate the performance of the optimized fingerprints, we trained
ANN models to fit the DFT-based PES of the Pd13H2 NP with both
the template and optimized fingerprints. Ten independent models
are trained for each set of fingerprints and the one with the best
performance discussed here. In the models from both sets of fin-
gerprints, the training and the test sets show comparable accuracy
without obvious overfitting (Figs. S8 and S9).

Figure 4(a) shows the predicted energy (left panel) and forces
(right panel) from the template (blue) and the optimized (red) mod-
els against the reference DFT values. In both panels, the optimized
model exhibits a tighter distribution along the y = x line as compared
to the template model. This indicates that the ANN model with opti-
mized fingerprints reaches a higher accuracy compared to those with
the template fingerprints. Specifically, the template model shows a
lower performance on force prediction as indicated by the sparse
distribution of blue dots in the right panel of Fig. 4(a). These results
demonstrate that the ANN model is improved for the training and
test data upon fingerprint optimization.

To further validate our models, we artificially pulled one Pd
atom and one H atom away from the particle and evaluated the
energy of structures along this trajectory as indicated in the inset in
Fig. 4(b). The structures used in this validation were not included
in the training data. The resulting energy profiles from the tem-
plate (blue) and optimized (red) models are compared to the ref-
erence DFT values in Fig. 4(b). The energy profile from the opti-
mized model shows better agreement with the reference DFT results
than that from the template model. Specifically, the template model
underestimates the energy at r < 2.7 Å but overestimates at r > 2.7 Å
in the Pd–Pd case and predicts a flat basin from 2.5 Å to 2.7 Å, incon-
sistent with the reference DFT data. The optimized model largely
minimizes this discrepancy. In the H–Pd case, the optimized model

FIG. 4. (a) Comparison of the energy (left
panel) and forces (right panel) evaluated
by the ANN model with the reference
DFT values. The blue and red dots rep-
resent values calculated from the ANN
model based on the template and the
optimized fingerprints, respectively. Cor-
responding root mean square errors are
presented in the figure. (b) Energy varia-
tion with the Pd–Pd and the H–Pd dis-
tance obtained from the DFT method
(black) and the ANN model based on the
template (blue) and the optimized (red)
fingerprints.
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is able to reproduce DFT energies of structures with r < 2.0 Å and
increases the prediction accuracy for structures beyond that region.
More importantly, the optimized model yields a smooth energy pro-
file along the trajectory, whereas a turning point is observed in the
template model. These validation results further indicate that our
fingerprint optimization method improves the global performance
of the ANN model.

D. AKMC simulations with the ANN model
The AKMC method is a coarse-grain dynamic simulation

method with time evolution of the system accumulating on the time
scale of the state-to-state transitions.32,33 In our previous study, we
showed that the AKMC method is able to mitigate the time scale
problem in molecular dynamics simulations and extend the time
scale to that of experiments.48 Nevertheless, a significant challenge
for the AMKC method is the availability of reliable and inexpen-
sive force fields that are accurate and smooth enough to facilitate the
location of transition states.

Here, we performed AKMC simulations to compute the
dynamical evolution of a Pd13H2 NP at 300 K with energies and
forces evaluated by our optimized ANN model. In the AKMC sim-
ulation, a minimum distance (Rmin) between each atomic type was
set to avoid the collapse of the ANN model beyond the range of the
training data. Any distance below Rmin was set to Rmin. The AKMC
method as implemented in the EON package was used to perform
the simulation.49 The dimer method was used to find all possible
low-energy transition events, and the kinetic Monte Carlo algorithm
was used to determine which event the system proceeds with. At
each new state, such dimer/KMC cycles were repeated to simulate
the state-to-state evolution of the system. More details about the
AKMC method can be found in Ref. 48.

The blue line in Fig. 5(a) shows the time evolution of the total
energy of the system from the AKMC simulation based on the ANN
model. Roughly, five energy plateaus associated with five types of
structures, as grouped in the disconnectivity graph [Fig. 5(b)], are
observed in the simulation. Each drop in the energy evolution plot
corresponds to a structural transition, except for the transition from
4 to 5, which leads to a slight increase in energy. For comparison, we
also calculated the energy of the local-minima structures extracted
from the AKMC simulation with DFT [red line in Fig. 5(a)]. The
time evolution of the total energy for the AKMC simulation based
on the ANN model is consistent with the DFT reference. Using DFT,
we further relaxed the most stable structures, corresponding to the
green dots in the disconnectivity graph. The structures obtained with
the corresponding energy (Ediff ) and structure (Sdiff ) difference are
shown in Fig. 5(c). The gold (light blue) and green (white) colors
represent Pd and H atoms in the DFT-relaxed (ANN-relaxed) struc-
tures, respectively. The structures obtained from both methods are
in agreement with Sdiff values smaller than 0.05 Å/atom. The energy
differences range from 0.05 eV to 0.20 eV. These results demonstrate
the reliability and accuracy of our ANN.

As discussed above, the NP undergoes a structural transition
accompanied by diffusion of H atoms on the NP surface. The over-
all energy barrier for the structural transition from type k to k + 1
can be extracted from the disconnectivity graph, taken as the energy
difference between the minimum-energy structure (green dots in
Fig. 5(b)] of type k and the vertex that connects to a k + 1 state.

FIG. 5. (a) Time evolution of the total energy and (b) disconnectivity graph obtained
from an AKMC simulation of the Pd13H2 cluster at 300 K. The numbers in (a) and
(b) indicate specific structures shown in (c), which are the lowest-energy struc-
tures for different types of isomers (highlighted as green dots in the disconnectivity
graph). The gold (light blue) and green (white) colors represent H and Pd atoms in
the structure obtained from DFT (optimized ANN model). Sdiff and Ediff represent
the structural and energy differences between geometries obtained from the DFT
method and the optimized ANN model, respectively.

For example, the 4→ 5 transition has an overall barrier ∼0.33 eV as
indicated by the gray dotted lines in Fig. 5(b). In this way, we are able
to characterize overall energy barriers for the k → k + 1 transitions
ranging from 0.15 eV to 0.33 eV. Each structural type entails a spe-
cific Pd skeletal structure with H atoms that can almost freely diffuse
on the surface of the Pd structure with very low barriers (<0.07 eV).
These results suggest that the Pd13H2 particle stays in a dynamic state
with facile movement of H. Throughout the AKMC simulation, we
did not observe embedding of H atoms into the nanoparticle. Likely,
a higher barrier is required for such embedding events, whereas the
diffusion of surface H atoms with low barriers limits the timescale of
the AKMC simulation.

IV. CONCLUSIONS
In this study, we first tested the sensitivity of the ANN model

with respect to the ACSF by training an ANN model for the LJ7

J. Chem. Phys. 152, 224102 (2020); doi: 10.1063/5.0007391 152, 224102-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

particle and found that the product of the fingerprint functions with
the corresponding pair distribution function are responsible for the
performance variation of the ANN model. Inspired by this sensi-
tivity test, we defined an objective function that can be minimized
to find optimal fingerprints, thus improving the performance of the
ANN model. In this optimization process, we first define a set of
template fingerprints based on the radial and angular regions to be
explored and then minimize the objective function to locate fin-
gerprints that can reproduce the template fingerprints in the f ∗g
space. Accordingly, we successfully developed an ANN model for
the Pd13H2 NP system that is superior to the model trained with the
template fingerprints. Furthermore, we applied the developed ANN
model to AKMC simulations of dynamic behavior of the Pd13H2 NP,
proving the reliability and accuracy of the model.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details about the
structure of the optimized fingerprints and their efficacy.
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