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1. { Introduction

A common and important problem in theoretical chemistry and in condensed matter
physics is the identi�cation of a lowest energy path for a rearrangement of a group of
atoms from one stable con�guration to another. Such a path is often referred to as the
`minimum energy path' (MEP). It is frequently used to de�ne a `reaction coordinate'
[1] for transitions, such as chemical reactions, changes in conformation of molecules, or
di�usion processes in solids. The potential energy maximum along the MEP is the saddle
point energy which gives the activation energy barrier, a quantity of central importance
for estimating the transition rate within harmonic transition state theory [2].

Many di�erent methods have been presented for �nding reaction paths and saddle
points (see reference [3] for a recent review). Some of the schemes start at the local
minimum on the potential energy surface representing the initial state and then trace
stepwise, in a sequential manner, a path of slowest ascent [4, 5, 6]. Such slowest ascent
paths, however, do not necessarily lead to saddle points. Figure 1 shows an example
of such a system (the details of the model, Model II, are given in the Appendix). A
commonly used method involves calculating normal modes of a local harmonic approx-
imations of the potential energy surface and then following each of the modes until a
saddle point is found[7, 8]. Each step in this procedure requires evaluation and diagonal-
ization of the second derivative matrix and is therefore limited to rather small systems
and descriptions of atomic interactions where second derivatives are readily available
(excluding, for example, plane wave based density functional theory calculations).

Other methods make use of a two point boundary condition, i.e. both the initial
and �nal con�gurations for the transition are given. These would normally be two local
minima on the multidimensional potential energy surface which may have been obtained
by �nite temperature molecular dynamics or by Monte Carlo simulated annealing meth-
ods. We will focus here on such problems. We will also focus the discussion on methods
that only require �rst derivatives of the potential energy. The simplest of these is the
`drag' method or the `reaction coordinate' method, where some subset of the coordinates
in the system is used to de�ne a progress variable, often through linear interpolation
between the initial and �nal con�gurations. This one degree of freedom is then varied
stepwise from the initial to the �nal value and at each step a minimization is carried
out over the remaining degrees of freedom (a total of (3N � 1) degrees of freedom if the
system consists of N atoms in 3 dimensions). While this method can work well in simple
cases, there are many instances were it fails. The path generated may be discontinuous
and the procedure may depend on the direction of the drag (hysteresis e�ects). In par-
ticular, some atomic coordinates may `slip' near the saddle point region and the saddle
point con�guration will then be missed [9, 10]. An example of this is given in �gure 1.
Even though the initial straight line interpolation goes very close to the saddle point,
the relaxation of the remaining degree of freedom gives a result that is quite far from
the MEP. For a range of values of the drag coordinate, there are, in fact, two minima. If
the drag coordinate is incremented gradually using the previous minimum as an initial
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Fig. 1. { A contour plot of the potential energy surface for a simple test problem, model II (see
Appendix), where an atom, B, can form a chemical bond with either one of two �xed atoms, A or
C, (described by a LEPS potential) and is simultaneously coupled in a harmonic way to a fourth
atom, D. The horizontal axis gives the A-B distance and the vertical axis the B-D distance. All
atoms are con�ned to a line. The MEP is shown with a dotted line going through the saddle
point (obtained with the NEB method using 50 images). A straight line interpolation between
the initial and �nal state minima, de�ning a `drag coordinate', is shown with small dashes.
In the drag method, the system energy is minimized with respect to all remaining degrees of
freedom, corresponding here to relaxation along a line perpendicular to the drag line. Such a
line going through the saddle point is shown with large dashes. The drag method gives paths
indicated by two thick, solid lines. The drag paths lie close to the slowest ascent paths, which
do not lead to the saddle point. The result of the drag method is a discontinuous path which
depends on the direction of the drag.

guess in the minimization procedure for the next value of the drag coordinate, then two
di�erent paths will be traced out depending on whether the calculation starts from the
initial state or the �nal state. These paths `overshoot' the saddle point until the potential
energy contours become parallel to the line corresponding to the degree of freedom that
is being optimized.

More recently another class of two point methods has emerged. There, a chain
of images (or replicas, or `states') of the system is generated between the end point
con�gurations and all the intermediate images are optimized simultaneously in some
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concerted way. An example calculation is shown in �gure 2. Here, the initial images
are located along a line joining the initial and �nal point, but after an optimization
calculation acting on all the images simultaneously, the images lie near the MEP. The
distribution of the images, which give a discrete representation of the path, can be
controlled and has been set here to be twice as high in the barrier region as compared
with the end regions. An important aspect of these types of methods is that parallel
computers or simply a cluster of networked computers can be used very e�ciently for
�nding the MEP, in contrast to methods that are based on a sequential `walk' along the
potential energy surface [4, 5, 6, 7, 8, 11, 12]. We will give an overview of these types
of methods in section 2. We will then, in section 3, discuss a method we refer to as the
`Nudged Elastic Band' (NEB) method. This method has already been presented briey
elsewhere [13] and has been applied successfully to a wide range of problems, including
studies of di�usion processes at metal surfaces[14], multiple atom exchange processes
during sputter deposition[15], dissociative adsorption of a molecule on a surface[13],
di�usion of rigid water molecules in ice[16], premelting of metal clusters[17], contact
formation between metal tip and a surface[18], cross-slip of screw dislocations in a metal
(a simulation requiring over 100,000 atoms in the system, and a total of over 2,000,000
atoms in the MEP calculation)[19], and atomic exchange processes at semiconductor
surfaces (using a plane wave based DFT method to calculate the atomic forces) [20].
The NEB method is particularly simple and easy to implement and we give a detailed
description for implementing the method in section 4. Section 5 describes a simple
test calculation on an adatom hop on a surface, illustrating the importance of nudging
the elastic band. Section 6 points out the importance of including spring interactions
between the images. A discussion of the theoretical basis of the NEB method and possible
extensions of it are discussed in section 7. A summary is give in section 8.

2. { Chain-of-states methods

In chain-of-states methods, several images (or `states') of the system are connected
together to trace out a path. If the images are connected with springs of zero natural
length and the object function is de�ned as

SPEB(~R1; : : : ; ~RP�1) =
PX
i=0

V (~Ri) +
PX
i=1

Pk

2
(~Ri � ~Ri�1)

2(1)

then the chain is mathematically analogous to a Feynman path integral [21] for an o�-
diagonal element of a density matrix describing a quantum particle. Kuki and Wolynes
carried out thermal sampling of such paths to identify important tunneling paths of
electrons in proteins [22]. In the context of �nding MEPs for classical systems, one could
envision minimizing the object function in eqn. (1) with respect to the intermediate
images while keeping the end point images, R0 and RP , �xed. We will refer to this as
the plain elastic band (PEB) method. Below, we will illustrate how it, in fact, fails to
provide the MEP in most situations. We will also present modi�cations to eqn. (1) which
solve those problems.

An early attempt to use a chain-of-states method to analyse transitions in classical
systems was made by Pratt [23]. He proposed a statistical procedure where a �nite
temperature Monte Carlo algorithm is used to sample a Markovian chain of images of
the system in order to �nd transition state regions. This approach has recently been
further developed by Chandler and coworkers [24] and opens the possibility of analysing
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Fig. 2. { Same test problem as in Fig. 1. The initial and �nal con�guration of a NEB with
16 images is shown. The straight line interpolation between the initial and �nal point is shown
with dashes and the small, �lled circles along the line indicate the initial con�guration chosen
for the images in the elastic band. The larger, �lled circles lying close to the MEP show the
images after convergen ce. The spring constant is k = 0:5 near the ends of the band and k = 1:0
in the middle so as to increase the density of images in the most relevant region.

transitions in rugged potential energy landscapes where a very large number of relevant
MEPs need to be included in rate calculations. We will limit the discussion here to
systems where one or at most a few MEPs need to be found, even though the systems
are large and the transitions complex.

An algorithm for �nding a reaction path based on optimization of a line integral
over a discretized path was presented by Elber and Karplus [25]. They de�ned the
object function as

SEK(~R1; : : : ; ~RP�1) =
1qP
j j�

~lj j2

P�1X
j=1

V (~Rj)j�~lj j

+

PX
j=1

�

0
@j�~lj j �

vuut PX
j

j�~lj j2=P

1
A
2

(2)
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where j�~lj j =
q
j~Rj � ~Rj�1j2. Here, the springs connecting adjacent images have a

natural length, equal to the average separation between images along the current estimate
of the optimal path. The object function is minimized with respect to the intermediate
images, ~R1; ~R2; : : : ; ~RP�1 using a non-linear optimization algorithm. The algorithm has
been applied to transitions in several biological systems. It can give a good indication of
where the saddle point is, but, as noted by the authors, does not converge to the MEP
and does not give a good estimate of the saddle point energy. Typically the results are
re�ned using a Newton-Raphson method (which requires the second derivatives) or an
iterative method based on the �rst derivatives only [11].

Czerminski and Elber presented an improved method for �nding approximate MEPs,
the Self-Penalty Walk algorithm (SPW) [26]. Noting that the minimization of SEK can
lead to aggregation of the images and crossings of the path with itself in the regions near
minima, they added a repulsive term to the object function in eqn. (2) so as to keep the
images apart.

Ulitsky and Elber proposed a di�erent algorithm which can converge to the MEP but
has a smaller radius of convergence than the SPW [27]. Choi and Elber later presented
an improvement of this algorithm with faster convergence, the Locally Updated Planes
(LUP) algorithm [28]. There, an initial guess for a MEP in terms of a sequence of states is
improved on by �rst estimating a local tangent to the path as the line segment connecting
the previous and later image in the chain

q̂i =
~Ri+1 � ~Ri�1

j~Ri+1 � ~Ri�1j
(3)

and then minimizing the energy of each image, i, within the hyperplane with normal qi,
i.e. relaxing the system according to

@ ~Ri

@t
= �~rV (~Ri)[1� q̂iq̂i]:(4)

After everyM steps (where M is on the order of 10) in the relaxation, the local tangents
q̂i are updated. This algorithm has been used in many di�erent contexts, in particular in
large DFT calculations of chemical processes [29]. Since the images are not connected,
the LUP algorithm gives an uneven distribution of images along the path, and can even
give a discontinuous path when two or more MEPs lie between the given initial and �nal
states [28]. Choi and Elber point out that it is important to start with a good initial
guess to avoid these problems, for example an approximate MEP obtained by the SPW
method. The NEB method, discussed below, is closely related to both the LUP method
and the elastic band methods where continuity of the path is guaranteed by including
spring interactions. The NEB method incorporates the strong points of both of these
approaches.

Sevick, Bell and Theodorou [30] proposed a chain of states method for �nding the
MEP, but their optimization method, which includes explicit constraints for rigidly �xing
the distance between images, requires evaluation of the matrix of second derivatives of the
potential and is, therefore, not as applicable to large systems and complex interactions.

Chain-of-states methods have also been used for �nding classical dynamical paths
[31, 32]. Gillilan and Wilson [32] suggested using an object function similar to SPEB

eqn. (1) for �nding saddle points, but the method su�ers from problems which will be
illustrated in the next section.
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3. { The NEB method

To motivate the NEB method, we �rst discuss the shortcomings of the plain elastic
band method where the object function is de�ned as in eqn. (1). Figure 3 shows the
result for a two-dimensional LEPS potential (see appendix for details on the model). In
this method, the force acting on image i is

~Fi = �~rV (~Ri) + ~F s
i(5)

where

~F s
i � ki+1

�
~Ri+1 � ~Ri

�
� ki

�
~Ri � ~Ri�1

�
:(6)

Figure 3a shows the results of a calculation where all spring constants are k = 1:0. Here,
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Fig. 3. { A contour plot of the potential energy surface for a simple test problem, model I (see
Appendix), where an atom, B, can form a chemical bond with either one of two movable atoms,
A or C, as described by a LEPS potential. The horizontal axis gives the A-B distance and the
vertical axis the B-C distance. (a) A plain elastic band with spring constant k = 1:0 is shown
with �lled circles connected by a solid line. It cuts the corner and leads to an over estimate of
the saddle point energy. The MEP as obtained by the NEB method is shown with a solid line
going through the saddle point. The inset shows the variation of the potential energy along the
plain elastic band (dashed line) and the MEP (solid line). (b) Same as (a) but with a spring
constant of k = 0:1. The corner cutting is diminished, but now the images slide down from the
barrier region towards the minima at the endpoints thus reducing the resolution of the path in
the region of greatest impo rtance.

the elastic band is too sti� and the path cuts the corner and therefore misses the saddle
point region. Figure 3b shows the result when a smaller spring constant is used k = 0:1.
Now the elastic band comes closer to the saddle point, but the images manage to slide
down and avoid the barrier region, thus reducing the resolution of the path in the most
critical region. These problems have been noted previously [32]. In the continuum limit,
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the object function becomes

SPEB = P

Z
d�

0
@V (~R(�)) +

k(P )

2P

�����
d~R

d�

�����
2
1
A(7)

where the number of images, P , is going to in�nity, and where we can specify some

dependence k(P ) of the spring constant on the number of images. If k(P )2P goes to a �nite
(but non-zero) value as the number of images increases, the sti�ness of the band leads

to `corner-cutting' as described above. However, even if the coe�cient k(P )
2P vanishes

as P gets larger the resulting path may not go through the saddle point. This can be
seen by noting, that the object function is analogous to the action of a classical particle
of unit mass moving on the inverted potential energy surface with `time' de�ned as
� =

p
P=k(P )�. Then, minimizing SPEB corresponds to the dynamics d2 ~R=d�2 = ~rV .

As the classical particle moves through the saddle point region it will have a �nite velocity.
If the path is curved there, the particle will be a�ected by a force with components
perpendicular to the path, i.e. the particle cannot follow the MEP.

We now present a simple way to solve the problems with the plain elastic band
method, enabling convergence to the MEP when su�ciently many images are used in
the elastic band. The problem with corner cutting results from the component of the
spring force which is perpendicular to the path and tends to pull images o� the MEP.
The problem with the sliding down results from the component of the true force ~rV (Ri)
in the direction of the path. The distance between images becomes uneven so the net
spring force can balance out the parallel component of the true potential force.

The cure for this is very simple. In the NEB method, a minimization of an elastic
band is carried out where the perpendicular component of the spring force and the parallel
component of the true force are projected out. The force on image i then becomes

~F 0
i = �~rV (~Ri)j? + ~F s

i � �̂k �̂k(8)

where �̂k is the unit tangent to the path and ~rV (~Ri)j? = ~rV (~Ri)� ~rV (~Ri) � �̂k �̂k: We

refer to this projection of the perpendicular component of ~rV and the parallel compo-
nent of the spring force as `nudging'. These force projections decouple the dynamics of
the path itself from the particular distribution of images chosen in the discrete represen-
tation of the path. The spring force then does not interfere with the relaxation of the
images perpendicular to the path and the relaxed con�guration of the images satis�es
~rV (~Ri)j? = 0, i.e. they lie on the MEP. Furthermore, since the spring force only a�ects
the distribution of the images within the path, the choice of the spring constant is quite
arbitrary. This decoupling of the relaxation of the path and the discrete representation
of the path is essential to ensure convergence to the MEP.

When the energy of the system changes rapidly along the path, but the restoring
force on the images perpendicular to the path is weak, as can be the case, for example,
when covalent bonds are broken and formed (as in Si adatom di�usion on a Si surface),
the paths can get `kinky' and the convergence of the minimization slowed down. Images
caught in the region of large parallel force try to slide down but since the nudging ensures
equal spacing of the images, this can only occur by lengthening and, thereby, buckling
of the chain in another, nearly force free region. The estimate of the local tangent can
then become problematic. An e�ective remedy for this has been the introduction of a
smooth switching function that gradually turns on the perpendicular component of the
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spring force where the path becomes kinky. The force on image i then becomes

~FNEB
i = ~F 0

i + f(�i)
�
~F s
i � ~F s

i � �̂k �̂k

�
(9)

where f(�) is a switching function which goes from 0 for a straight path to 1 if adjacent
segments of the path form a right angle, for example

f(�) =
1

2
(1 + cos (�(cos�)))(10)

when �=2 < � < �=2 and 1 else. Here cos�i = (~Ri+1� ~Ri) �(~Ri� ~Ri�1)=(j~Ri+1� ~Rijj~Ri�
~Ri�1j). The full perpendicular spring force is kept if the angle between adjacent path
segments becomes 90� but none of the perpendicular spring force is kept if the angle is zero
(i.e. the three images are in a straight line). A small amount of the perpendicular spring
force is often enough to straighten out the path and signi�cantly improve convergence.
One should be careful not to include too much of the perpendicular spring force, since
it can lead to corner cutting and an overestimate of the saddle point energy when few
images are used to represent the path.

Figure 3 shows the result of NEB calculations for the LEPS problem, model I.
Clearly, both the corner-cutting and the sliding-down problems exhibited by the plain
elastic band are solved. In these calculations, the spring constant was chosen to be the
same in all cases, so the images become equally spaced along the path. Fig. 2 shows the
results for model II. Here the spring constant was chosen to be twice as strong in the
region of the saddle point, to illustrate the exibility the method o�ers in distributing
images along the path. As a result, the resolution of the path is twice as high in the
most critical region.

4. { Implementation of the NEB method

The implementation of the NEB method in a molecular dynamics program is quite
simple. We have, in particular, implemented NEB with many-body potentials for silicon
[20], point-charge models for rigid water molecules[16], E�ective Medium[18] and Embed-
ded Atom Method potentials for metals [13, 14] and plane wave based density functional
theory calculations[20]. First, the energy and gradient need to be evaluated for each
image in the elastic band using some description of the energetics of the system; a �rst
principles calculation or an empirical force �eld. Then, for each image, the coordinates of
the two adjacent images are required in order to estimate the local tangent to the path,
project out the perpendicular component of the gradient and add the parallel component
of the spring force (according to eqn. (8)) as well as some of the perpendicular component
of the spring force if the path is kinky (eqns. (8) and (9)). We have approximated the

tangent as the vector that bisects the angle formed between the vectors ~Ri+1 � ~Ri and
~Ri � ~Ri�1. The computation of ~rV for the various images of the system can be done in
parallel, for example with a separate node handling each one of the images. Each node
then needs to receive coordinates of adjacent images only to evaluate the spring force
and to carry out the force projections.

Using P +1 images of the system to represent the path in between the end points in
a system described by N coordinates, the magnitude of the forces needs to be minimized
with respect to N(P � 1) degrees of freedom. Various techniques can be used for the
minimization. We have used a simple but quite e�cient method based on the velocity
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Verlet algorithm for simulating classical dynamics [33]. At each timestep the coordinates
and velocities are updated from the coupled �rst order equations of motion based on
the force evaluated at the current coordinates. If the velocity is zeroed at each step,
the algorithm gives a steepest descent minimization. A more e�cient procedure is to
keep the component of the velocity parallel to the force at the current step, unless it
is pointing in a direction opposite to the force. More speci�cally, if F̂ is the N(P � 1)
dimensional unit vector in the direction of the force and ~u is the N(P � 1) dimensional
velocity vector, then

~unew(t) =

�
(~u(t) � F̂ ) F̂ if ~u(t) � F̂ > 0
0 else:

(11)

If the force is consistently pointing in a similar direction, the system picks up velocity.
This is equivalent to increasing the timestep. When the system overshoots the minimum,
the velocity is zeroed.

To start the path �nding algorithm, an initial guess is required. We have found a
simple linear interpolation between the initial and �nal point adequate in many cases.
When multiple MEPs are present, the optimization leads to convergence to the MEP
closest to the initial guess. In order to �nd the optimal MEP in such a situation, it may
be necessary to use a simulated annealing procedure, as discussed in section 7. A typical
path �nding calculation involves between 10 and 30 images and requires a few hundred
iterations to converge.

Finally, it is important to eliminate overall translation and rotation of the system
during the optimization of the path. This can be accomplished by �xing six degrees of
freedom in each image of the system. We have implemented this in a simple way by �xing
one atom (i.e. zeroing all forces acting on one of the atoms in the system), constraining
another atom to only move along a line (zeroing, for example, the x and y components of
the force), and constraining a third atom to move only in a plane (zeroing, for example,
the x component of the force).

5. { Application to an adatom hop on a surface

We now discuss another application of the method to a simple system to illustrate
the convergence of the NEB method and to contrast it with the plain elastic band method.
We calculated the activation barrier for a di�usion hop of a Cu atom over the bridge
site on the Cu(100) surface using a potential of the EAM type [34] �tted to various Cu
crystal properties and the Cu dimer [35]. This is a simple test case where the energy of
the saddle point can be evaluated simply because of the symmetry of the saddle point
con�guration.

When only a small subset of the atoms in the system is displaced substantially during
the transition (as is the case here), and when the interaction can be broken down into
contributions arising from pairwise, three-body, etc. contributions, then the calculation
of the energy and force can be implemented very e�ciently. Instead of representing every
atom in the system with P+1 images in the elastic band, the atoms outside a certain
radius away from the `active' region (roughly equal to the range of the pairwise or three-
body interaction potential) can e�ectively be taken to be in the same position for the
whole transition (i.e. same coordinates in all images in the elastic band). We have
implemented EAM [34] and Terso� [36] type interactions potentials in this way. The
computations required to determine the full transition path can be of the same order
as a relaxation of a single con�guration along the path. For example, in a calculation
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of the di�usion barrier for a metal atom on a metal surface (such as the one presented
below) a total of 500 to 1000 atoms are required for each con�guration of the system.
Typically only 30 to 50 atoms need to be represented with multiple images in the elastic
band, even when complicated exchange processes are simulated. With 20 images in the
elastic band (which is typically su�cient) the whole transition path can be treated as a
single con�guration with about twice the number of atoms. The determination of the
MEP then only takes a little over twice the time required to relax a single point along
the path! This type of implementation, however, requires additional bookkeeping in the
force routine which can be di�cult if the interactions are complicated.

Figure 4 shows the results of several calculations using the plain elastic band method.
When the chain consists of 20 images the estimated barrier clearly increases as the springs

are made sti�er, giving a substantial overestimate when k > 1 eV=�A
2
. The atoms do

not have enough freedom to relax their positions, because the springs hold the atoms

too tightly in place. On the other hand, when k < 0:1 eV=�A
2
the images tend to slide

down the potential barrier, leading to an underestimate of the barrier height and poor
resolution of the MEP near the saddle point. This sliding down tendency is evident
in comparing the highest energy image to the next-highest energy image. The optimal
spring constant is one which gives a balance between the restoring force in the springs and
the downward pull from the curvature of the potential barrier. Representing the potential
barrier in the vicinity of the saddle point as V = V0 �

1
2Kx2, the value of K is close to

being the optimal choice for the constant k. In this particular case, K = 0:48 eV=�A
2
.

When the number of images in the chain is increased to 50 a better estimate of the
barrier is obtained. Note that the optimal value for k is still the same. The longer chain
gives an estimate of the barrier height which varies by about 0:02 eV as k is varied in

the range 0:2� 2:0 eV=�A
2
.

The results for this test problem show that the plain elastic band method can, in
simple cases, give a reasonable approximation to the saddle point energy if the constant
k is chosen to have a value in the right range, despite the fact that there is no guarantee
of convergence to the MEP. However, for some systems the plain elastic band method
has been found to give very poor results. One example is illustrated in �gure 3. This also
turned out to be the case in calculations of the reaction path for more complex di�usion
processes on metal surfaces [14] and dissociative sticking of H2 on Cu(110) [13].

Figure 5 shows the calculated results using the NEB method. The images are now
equally spaced in the N dimensional con�guration space. There is no sliding down
the barrier even at low k values. Furthermore, since the perpendicular component of
the spring force is zeroed, the springs do not prevent the atoms from relaxing to the
MEP. The estimated barrier height, therefore, does not increase with k. In fact, over
the whole range of k used in the calculations, from k = 0:01 to k = 20, the converged
energy of the highest energy image was the same to �ve signi�cant �gures. Eventually,
a problem does evolve as the springs are made extremely sti�. Very large spring forces
make the minimization scheme ine�cient since a very small time step is required. Also,
an extremely small spring constant will make the convergence to the MEP slow. But,
over three orders of magnitude for the value of the spring constant, the calculation works
well and gives a good estimate of the barrier. Since we on purpose chose an even number
of images in the chain and the barrier is symmetric, the highest energy image will never
be sitting at the saddle point position. The energy of the highest image is a lower bound
on the barrier height. An approximate upper bound can be obtained by calculating the
di�erence between the highest and next-highest image and extrapolating. For higher
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Fig. 4. { Calculation of the activation energy barrier for an adatom di�usion hop over a bridge
site on the Cu(100) surface using minimization of the plain elastic band. Results for various
values of the spring constant, k, and number of images in t he chain, P +1, are shown. Squares
are for P = 19 and diamonds for P = 49. The highest energy image (solid lines) and the next-
highest one (dashed lines) are shown. The optimal spring constant, k, is close to the curvature
of the potential ener gy barrier along the transition path. A mark on the x = 0 line shows the
value obtained by relaxing the adatom at the bridge site, 4:15 eV . For large values of k, corner
cutting makes the estimate of the activation energy too high. For small values of k, the images
slide down from the saddle point region.

resolution, more images need to be included in the chain or a sti�er spring used near the
barrier than near the ends of the path.

6. { What happens if the springs are skipped?

Since the action of the springs is only felt along the path, the value of the spring
constant is not critical. For example, an equal distribution of the images will be obtained
for any non-zero, constant value of the spring constant, as illustrated in the previous
section. But, if the spring constant is set to zero in an NEB calculation, the control of
the distribution of the images is lost. Figure 6 shows the result for model system II (see
appendix). After 100 iterations with a timestep of 0.1 (�g 6a), the images have relaxed to
the vicinity of the MEP, but the path is kinky and the spacing between images is uneven.
The kinks uctuate with time and a clear convergence in the forces is not obtained. This
perpetual motion of the images leads to gradual sliding down from the high barrier region.
After 200 steps there is a sizable gap in the barrier region (�gure 6b) and after 1000 steps
most of the images have slid down into the potential wells. The inclusion of the springs,
which increases the computational e�ort insigni�cantly, is therefore essential for reaching
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Fig. 5. { Same di�usion process as in �g. 4, but only the P = 19 case is shown. Results of both
the plain elastic band method and results of the NEB method are shown. The nudging algorithm
in NEB ensures that the images are evenly spaced along the path in the 3N dimensional space if
the sti�ness of all the springs is chosen to be the same. Also, the nudging algorithm eliminates
corner cutting and leads to convergence to practically the same barrier height for values of k
ranging over three orders of magnitude.

a clean convergence to an MEP and for ensuring continuity of the path especially when
two or more MEPs are present.

7. { An object function for NEB

The question arises whether the NEB optimization can be written as a minimization
of some object function. This is, in particular, relevant for extending the method to �nite
temperature simulated annealing procedures allowing searches among di�erent MEPs to
�nd the optimal one, i.e. the one with the lowest saddle point energy, rather than just
convergence to the MEP closest to the initial guess.

We now consider a continuum representation of the path, and consider the process of
relaxing the path to the MEP. The path is described by ~R(�), a N dimensional position
vector parametrized by a scalar � = [0; 1]. N is the number of degrees of freedom
participating in the transition (possibly coordinates of all the atoms in the system).
Any property of the path should be `gauge invariant', i.e. independent of the particular
parametrization used in its description, such as the rate at which the path is traced out
by ~R(�) as � is varied. In searching for an appropriate `action', i.e. integral over the
path, which can serve as an object function for the optimization, we can choose any
function of the potential energy, V (~R), and the length, l0, of the path. In particular, we
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Fig. 6. { Same test problem as in �gures 1 and 2. Results of optimization with no springs (k
set to zero) but including the force projections of NEB is shown. The initial con�guration of
the images was chosen to be along the straight line connecting initial and �nal points. (a) After
100 time steps (using a stepsize of 1 fs). (b) After 200 time steps. Because of the kinks on the
path and by a wiggling motion of the path, the images manage to slowly slide down from the
barrier region.

will choose

S =

Z l0

0

dl G(V (~R)) =

Z 1

0

d� v(�) G(V (~R(�))) =

Z 1

0

d� L(�)(11)

where G is some as yet unspeci�ed function and v is the rate at which the path is traced

out, v =
���d~R=d����. The Lagrangian L = vG only includes a potential energy term at

this point and gives a generalized force acting on the path

Fi = �
@L

@Ri
+

d

d�

�
@L

@(dRi=d�)

�
:(12)

Here i denotes any one of the N components describing the con�guration of the atoms
involved in the transition. Carrying out the di�erentiation gives

Fi = �vG0

0
@ NX
j=1

(�ij � �ki �kj)
@V

@Rj
�

G

G0
!i

1
A(13)

where �̂k is the unit tangent vector to the path, �k = d~R=dl = (1=v)d~R=d�, and !̂ is
the curvature vector, !̂ = d�̂k=dl. The invariance of the action to the parametrization of
the path ensures that only the perpendicular component of the potential energy gradient
enters the force

~F = �vG0

�
~rV (~R)j? �

G

G0
!̂

�
:(14)
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The function G should be chosen in such a way that the action is minimal for the
MEP. One possible choice is

G(V ) = eV=V0

where V0 is a scaling parameter which can be used to tune the potential energy landscape.
Then

~F = �
v

V0
eV=V0

�
~rV j? � V0!̂

�
:(15)

For any �nite V0, the force only involves the perpendicular component of the poten-
tial energy gradient and by minimizing S one obtains a path for which ~rV j? = V0~!.
By making V0 small enough, the path can be brought arbitrarily close to the MEP,
i.e. ~rV j? = 0. As V0 is lowered the forces are scaled by larger and larger prefactor
(v=V0) e

V=V0 which can be thought of as a rescaling of the e�ective mass of the path but
does not have any practical consequence (it simply determines the appropriate timestep
size in the minimization).

The continuum formulation can, therefore, lead directly to the `nudging' of the true
system forces, i.e. the removal of the parallel component of the force. For practical
numerical calculations, discretization of the path is needed. This means choosing a
particular representation of the path. Each point in the discretization is a full image or
replica of the systems N coordinates. The distribution of these images along the path
is a problem which should be separate and completely decoupled from the relaxation or
dynamics of the path itself. A given distribution can be obtained by introducing harmonic
spring interactions between the images and choosing the spring constant between adjacent
images accordingly. The spring force should act only parallel to the path, since its purpose
is only to distribute the images along the path. Therefore, the force on each image, j,
becomes

~Fj = �
v

V0
eV (

~Rj)=V0
�
~rV (~Rj)j? � V0!̂ + ~F s

i � �̂k �̂k

�
(16)

where F s
i is given by eqn. (6). At low enough V0 where V0!̂ can be neglected and after

absorbing the factor (v=V0) e
V=V0 into an e�ective mass, eqn (8) is recovered.

In large and complex systems, two or more MEPs may exist between the given initial
and �nal points. The minimization technique described above will likely converge to the
MEP closest to the initial guess. The various paths can in such cases be sampled by
running simulated annealing or �nite temperature molecular dynamics.

8. { Summary

To summarize, The NEB method has several desirable qualities, including (1) it
converges to a MEP, given su�cient resolution in the discrete representation of the path,
i.e. when enough images are included in the chain. (2) It only requires evaluation of
the interaction energy and the �rst derivative of the energy with respect to coordinates.
(3) The convergence to the MEP is decoupled from the discrete representation of the
path, making the former robust and the latter exible. (4) The method is guaranteed
to give a continuous path even when multiple MEPs exist. (5) The algorithm inherently
involves parallel calculations and can easily make use of parallel computers or, simply
a linked cluster of workstations since very little communication is required between the
computing nodes.
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Appendix A.

The two-dimensional test problems

A.1. Model I: LEPS potential. { This model mimics a reaction involving three atoms
con�ned to motion along a line. Only one bond can be formed, either between atoms A
and B or between atoms B and C. The potential function is of the LEPS form [37]

V LEPS(rAB ; rBC) =
QAB

1 + a
+

QBC

1 + b
+

QAC

1 + c
�

�
J2AB

(1 + a)2
+

J2BC
(1 + b)2

+
J2AC

(1 + c)2

�
JABJBC

(1 + a)(1 + b)
�

JBCJAC
(1 + b)(1 + c)

�
JABJAC

(1 + a)(1 + c)

� 1

2

(17)

where the Q functions represent Coulomb interactions between the electron clouds and
the nuclei and the J functions represent the quantum mechanical exchange interactions.
The form of these functions is

Q(r) =
d

2

�
3

2
e�2�(r�r0) � e��(r�r0)

�

and

J(r) =
d

4

�
e�2�(r�r0) � 6e��(r�r0)

�
:

The parameters were chosen to be a = 0:05; b = 0:30; c = 0:05; dAB = 4:746; dBC =
4:746; dAC = 3:445, and for all three pairs we use r0 = 0:742 and � = 1:942.

A contour plot of the potential surface is given in �gure 3.

A.2. Model II: LEPS + Harmonic oscillator potential. { In model II, we �x the
location of the end point atoms A and C, and only allow atom B to move. An additional
degree of freedom is introduced which can be interpreted as a fourth atom which is
coupled in a harmonic way to atom B.

V (rAB ; x) = V LEPS(rAB ; rAC � rAB) + 2kc(rAB � (rAC=2� x=c))2(18)

where rAC = 3:742, kc = 0:2025, and c = 1:154. Other parameters are the same as for
model I, except b = 0:80 in model II. This type of model has frequently been used as a
simple representation of an activated process coupled to a medium, such as a chemical
reaction in a liquid solution or in a solid matrix.

A contour plot of the potential surface is given in �gures 1,2 and 6.
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