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A dimer method for finding saddle points on high dimensional potential
surfaces using only first derivatives

Graeme Henkelman and Hannes Jónsson
Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700

~Received 3 June 1999; accepted 20 July 1999!

The problem of determining which activated~and slow! transitions can occur from a given initial
state at a finite temperature is addressed. In the harmonic approximation to transition state theory
this problem reduces to finding the set of low lying saddle points at the boundary of the potential
energy basin associated with the initial state, as well as the relevant vibrational frequencies. Also,
when full transition state theory calculations are carried out, it can be useful to know the location
of the saddle points on the potential energy surface. A method for finding saddle points without
knowledge of the final state of the transition is described. The method only makes use of first
derivatives of the potential energy and is, therefore, applicable in situations where second
derivatives are too costly or too tedious to evaluate, for example, in plane wave based density
functional theory calculations. It is also designed to scale efficiently with the dimensionality of the
system and can be applied to very large systems when empirical or semiempirical methods are used
to obtain the atomic forces. The method can be started from the potential minimum representing the
initial state, or from an initial guess closer to the saddle point. An application to Al adatom diffusion
on an Al~100! surface described by an embedded atom method potential is presented. A large
number of saddle points were found for adatom diffusion and dimer/vacancy formation.
A surprisingly low energy four atom exchange process was found as well as processes indicative
of local hex reconstruction of the surface layer. ©1999 American Institute of Physics.
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I. INTRODUCTION

Most atomic scale transitions in the condensed pha
such as chemical reactions and diffusion, are activated
cesses, i.e., require surmounting a significant energy bar
While under typical conditions the thermal energy is on
order ofkBT50.025 eV, the barriers for such transitions a
typically on the order of 0.5 eV or higher. A transition th
occurs thousands of times per second is so slow on the s
of atomic vibrations that it would typically take several tho
sands of years of computational time on the fastest mod
computer to simulate a classical trajectory with reasona
chance of observing a single transition. As a result, class
dynamics simulations of activated transitions are faced w
an impossible time scale problem. It is not possible to
serve such transitions by simply simulating the classical
namics of the system. Arbitrarily raising the temperature
the system can lead to crossover to a different transi
mechanisms. The problem is to find a simulation algorit
that can be used to find which transition would occur and
what rate, if the classical dynamics could be simulated fo
long enough time.

Within transition state theory~TST! the problem be-
comes that of finding the free energy barrier for t
transition.1 This is a very challenging problem, especia
when the mechanism of the transition is unknown. With
the harmonic approximation to transition state theo
~hTST!2,3 the problem becomes that of finding the sad
point on the potential energy surface corresponding t
maximum along a minimum energy path that takes the s
7010021-9606/99/111(15)/7010/13/$15.00
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tem from one potential energy minimum to another. This
still a difficult problem when dealing with condensed mat
systems because of the high dimensionality of the poten
energy surface. When both the initial and final states of
transition are known, minimum energy path~s! for the tran-
sition can be found quite readily4 ~the problem of making
sure the path with lowest activation energy has been foun
still a difficult problem!. When only the initial state of the
transition is known, the problem of finding the releva
saddle point~s! becomes that of navigating in high dimen
sional space—a very challenging task. If the set of all r
evant, low lying saddle points for transitions from a give
initial state could be found reliably and the prefactor in t
hTST rate constant expression evaluated, then long time
tivated dynamics of the system could, in principle, be sim
lated. This may be impossible for all but the simplest s
tems.

Recently, significant progress has been made towa
this goal. In the activation-relaxation technique developed
Barkema and Mousseau, the system is driven from one
tential energy basin to another by inverting the componen
the force acting on the system along a line drawn from
instantaneous configuration to the initial configuration5,6 ~or
to a trailing image of the system7!. The new potential energy
basin is then accepted or rejected based on Monte Carlo s
pling. This has enabled equilibration of supercooled liqu
down to much lower temperature than could be achie
with direct classical dynamics simulations. In principle t
method could be used to estimate the rate of the transit
0 © 1999 American Institute of Physics
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observed using harmonic transition state theory, but the
gorithm does not always take the system through the c
vicinity of the saddle point, making the estimate of the ac
vation energy uncertain. Furthermore, there is no guara
the activation-relaxation technique will give the same tran
tion as a long classical trajectory, i.e., the transition with
lowest saddle point.

A very different approach to long time simulations h
been developed by Voter, the so-called hyperdynam
method.8,9 There, a classical trajectory is generated for
modified potential with a reduced well depth. The activa
transitions are thus made more probable and may be
served during the short time interval accessable by class
dynamics simulations. The relative rate of different transit
mechanisms is preserved in the modified system~within the
transition state theory approximation! so the hyperdynamics
trajectory should reveal the most probable activated tra
tions. It can, furthermore, provide an estimate of the tran
tion rate within the full, anharmonic transition state theo
approximation. In general, the hyperdynamics traject
simulation still requires a large number of force evaluatio
more than can be handled at the present time withab initio
methods, and the acceleration of the transitions beco
smaller as the system gets larger.

Powerful methods have been developed for climbing
potential energy surfaces from minima to saddle points inab
initio calculations of molecules. These methods have bec
part of the standard tool kit for molecular calculations, b
they require the evaluation and inversion of the Hessian
trix at each point along the search so as to find the lo
normal modes of the potential energy surface. The strat
of following local normal modes to find saddle points w
apparently first described by Crippen and Scheraga,10 and
later by Hilderbrandt.11 In these early algorithms, a sma
step is taken up the potential along a particular mode,
lowed by a step towards lower potential energy along
other modes. In the early 1980’s, these methods were
placed by quasi-Newton methods, in which the eigenval
of the Hessian matrix are shifted to ensure that the poten
is maximized along one chosen mode and minimized al
all others. The shift parameters, or Lagrange multiplie
were introduced by Cerjan and Miller12 and later modified by
Simonset al.,13,14 and by Wales.15 A summary of the early
developments is given in Ref. 16. These methods have b
used extensively inab initio calculations of molecules an
empirical potential calculations of atomic and molecu
clusters.17,18 We will refer to these methods collectively a
mode following methods. They are derived by expanding
potential in a local quadratic form, and selecting one of
local harmonic modes as the direction for the climb. If t
softest mode is chosen, this is analogous to walking up
slowest ascent of a valley. This does not necessarily lead
saddle point~as will be illustrated in an example below!, so
an important property of these methods is the ability
search for a saddle point along different orthogonal mo
leading away from a given initial configuration. But, sin
the mode following methods require the evaluation and
version of the second derivative Hessian matrix, they sc
poorly with the number of degrees of freedom in the syste
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Furthermore, second derivatives are only available at ra
low levels ofab initio calculations, and are also not availab
in plane wave based density functional theory~DFT! calcu-
lations. The dimer method presented here captures the m
important qualities of the mode following algorithms, whi
using only first derivatives of the potential energy.

An illustration of the importance of having a method th
can be used to systematically identify saddle points lead
from a given initial state, is the discovery by Feibelman
1990 that an Al adatom does not diffuse on the Al~100!
surface by repeated hops from one site to another, as
previously been assumed, but rather by a concerted exch
mechanism involving concerted displacement of tw
atoms.19 This illustrates well how the preconceived notion
a transition mechanism can be incorrect even for a sim
system. With the rapid increase in computational power a
increased sophistication of simulation software, the compl
ity of simulated systems has increased greatly. For m
systems that are actively being studied, even withab initio
methods, it is difficult and, in any case risky to simply gue
what the transition mechanism is.

II. THE DIMER METHOD

The method presented here for finding saddle points
volves working with two images~or two different replicas!
of the system. We will refer to this pair of images as t
‘‘dimer.’’ If the system hasn atoms, each one of the image
is specified by 3n coordinates. The two replicas have almo
the same set of 3n coordinates, but are displaced slightly b
a fixed distance. The saddle point search algorithm invol
moving the dimer uphill on the potential energy surfac
from the vicinity of the potential energy minimum of th
initial state up towards a saddle point. Along the way, t
dimer is rotated in order to find the lowest curvature mode
the potential energy at the point where the dimer is locat
The strategy of estimating the lowest curvature mode a
point without having to evaluate the Hessian matrix was p
sented by Voter in his hyperdynamics method. There, i
used to construct a repulsive bias potential so as to accele
classical dynamics of activated processes.9 In the method
presented here, we use his dimer strategy to make the se
for saddle points more efficient.

A. Forces and energies

The dimer, depicted in Fig. 1, is a pair of images sep
rated from their common midpointR by a distanceDR. The
vectorN̂ which defines the dimer orientation is a unit vect
pointing from one image atR2 to the other image atR1 .
When a transition state search is launched from an in
configuration, with no prior knowledge of whatN̂ might be,
a random unit vector is assigned toN̂ and the corresponding
dimer images are formed

R15R1DRN̂

and

R25R2DRN̂. ~1!
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Initially, and whenever the dimer is moved to a new locatio
the forces acting on the dimer and the energy of the dim
are evaluated. These quantities are calculated from the
ergy and the force (E1 , F1 , E2 , andF2) acting on the two
images. The energy of the dimerE5E11E2 is the sum of
the energy of the images. The energy and the force actin
the midpoint of the dimer are labeled asE0 andFR and are
calculated by interpolating between the images. The forceFR

is simply the average force (F11F2)/2. The energy of the
midpoint is estimated by using both the force and the ene
of the two images. A relation forE0 can be derived from the
finite difference formula for the curvature of the potentialC
along the dimer:

C5
~F22F1!•N̂

2DR
5

E22E0

~DR!2 , ~2!

E0 can be isolated from this expression in terms of
known forces on the images

E05
E

2
1

DR

4
~F12F2!•N̂. ~3!

It should be emphasized that all the properties of
dimer are derived from the forces and energy of the t
images. There is no need to evaluate energy and force a
midpoint between the two images. This is important
minimizing the total number of force evaluations required
find saddle points. An additional benefit of this strategy
that the method can be efficiently parallelized over two p
cessors, the energy and force on each image being calcu
on a separate processor. Forab initio calculations, in which
force evaluations typically take a very long time compar
with communication time, the execution time for each tra
sition state search is effectively halved if two processors
used.

B. Rotating the dimer

Each time the dimer is displaced, it is also rotated wit
single iteration towards the minimum energy configuratio
The practicality of the dimer method relies heavily on usi
an efficient algorithm for the rotation. Minimizing the dime
energy,E, is equivalent to finding the lowest curvature mo

FIG. 1. Definition of the various position and force vectors of the dim
The rotational force on the dimer,F', is the net force acting on image
perpendicular to the direction of the dimer.
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at R. The energy,E0 , at the fixed midpoint of the dimer is
constant during the rotation. SinceDR is also constant, Eq
~2! shows that the dimer energy,E, is linearly related to the
curvature,C, along the dimer. Therefore, the direction whic
minimizes E is along the minimum curvature mode at th
midpoint R.

1. Modified Newton method for rotation within a
plane

The dimer rotation will first be discussed in the conte
of a modified Newton method. In the next section, t
method will be extended to incorporate also a conjugate g
dient approach. The dimer is rotated along the rotatio
force, F'5F1

'2F2
' , where Fi

'[Fi2(Fi•N̂) N̂ for i 51,2.
The rotational force is taken to be the net force acting
image 1~see Fig. 1!. The rotation plane is spanned byF' and
the dimer orientationN̂. It is useful to define a unit vector
Q̂, within the plane of rotation, perpendicular toN̂. For the
modified Newton method,Q̂ is just a unit vector parallel to
F'. The vectorsQ̂ and N̂ form an orthonormal basis which
spans the rotation plane. Given an angle of rotation,du,
image 1 moves fromR1 to R1* ~see Fig. 2!

R1* 5R1~N̂ cosdu1Q̂ sindu!DR. ~4!

After image 1 is moved to the new pointR1* , the new dimer
orientationN̂* is calculated, and image 2 is positioned atR2*
according to Eq.~1!. The forcesF1* , F2* , and F* 5F1*
2F2* are then computed. A scalar rotational forceF5F'

•Q̂/DR is used to describe the magnitude of the rotatio
force along the direction of rotation. Dividing byDR scales
the magnitude ofF so that it is independent of the dime
separation. A finite difference approximation to the chan
in the rotational force,F, as the dimer rotates through th
angledu is given by

F85
dF

du
'UF* •Q̂* 2F•Q̂

du
U

u5du/2

. ~5!

This approximation most accurately estimates the deriva
for the midpoint of the finite rotation atu5du/2.

.
FIG. 2. Definition of the various quantities involved in rotating the dim
All vectors are in the plane of rotation. The dimer is first rotated abou
small angledu to give a finite difference estimate ofF8 @given by Eq.~5!#.
The dimer is then rotated by a calculated angleDu @given by Eq.~13!# to
zero the force within the plane of rotation.
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A reasonable estimate of the rotation,Du, required to
bring F to zero can be obtained from Newton’s method

Du'
~F•Q̂1F* •Q̂* !

22F8
. ~6!

The rotation angles are illustrated in Fig. 2. Unfortunate
Newton’s method systematically overestimates the angleDu
required to rotate the dimer to the minimum energy. An i
provement on Eq.~6! can be made if the form ofE(u), the
dimer energy as a function of rotation angle, is known. T
can be accomplished in the following way. The first term
a Taylor expansion of the potentialU in the neighborhood of
R is a hyperplane through the pointU(R)5E0 . This term
alone produces no rotational force on the dimer because
dimer energy in this case is independent of orientati
E(u)52E0 . The quadratic term in the Taylor expansion i
troduces a rotational force. In order to write an analytic fo
of the quadratic approximation to the potential,x̂ and ŷ are
defined to be the normal modes of the potentialU within the
plane of rotation. The plane is the two-dimensional subsp
spanned byQ̂ andN̂. Including terms up to second order
the Taylor expansion gives

U5E02~Fxx1Fy y!1 1
2 ~cxx21cy y2!. ~7!

The forcesFx and Fy are 2]U/]x and 2]U/]y wherex
and y are distances alongx̂ and ŷ. The curvature of the
potential alongx̂ and ŷ are cx and cy , respectively. The
dimer energyE can be expressed within this quadratic a
proximation as a function ofu:

E52E01~DR!2@cx cos2~u2u0!1cy sin2~u2u0!#, ~8!

whereu0 is some reference angle. As expected,Fx and Fy

which define the linear change inU do not contribute to the
energy of the dimer. Equation~8! can be rearranged using
trigonometric identity:

E52E01 1
2 ~DR!2$~cx2cy!cos@2~u2u0!#

1~cx1cy!%. ~9!

The derivative of this potential yields an analytical expre
sion for the scalar rotational force on the dimer

F5A sin@2~u2u0!#. ~10!

The constantA5(cx2cy) does not, in practice, have to b
evaluated. The energy and the rotational force on the di
are invariant to rotations ofp. Equation~10! shows thatu0

can be interpreted as the angle at which the force on
dimer is zero within the rotation plane. The differenceu
2u0 is the necessary angle of rotation required to reac
zero force. It is now possible to obtain an analytic form
the derivativeF8 defined in Eq.~5! within this harmonic
approximation to the energy

F85
dF

du
52A cos@2~u2u0!#. ~11!

In a simulation,F andF8 are evaluated at some orient
tion of the dimer. If this point is labeled asu50, then the
angle through which the dimer should be rotated to reac
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zero in the force isu0 . Let F0 andF08 be the values ofF and
F8 evaluated atu50. Then the ratio of Eqs.~10! and ~11!:

F0

F08
5

1

2
tan~22u0!, ~12!

yields a simple expression in which the desired rotat
angle can be isolated in terms of known quantities

Du5u052
1

2
arctanS 2F0

F08
D . ~13!

Equation~13! has better behavior than Eq.~6! for rotation in
the limits ofF→0 andF8→0. This approach to the minimi
zation is similar to a method used to minimize the electro
degrees of freedom in plane wave based density functio
theory ~DFT! calculations.20

As an example, we will discuss an application of t
modified Newton method to a system representing an alu
num adatom on an Al~100! surface. Here we focus on th
properties of the rotation only. The results of the saddle po
searches for this system are presented in Sec. III B. A di
is placed on the potential surface and incrementally rota
through an angle of 2p. Figure 3 shows the force and energ
of the dimer. The energy shows the expected sinusoidal
havior in the local quadratic approximation to the potenti
The period ofp is due to the symmetry of the dimer. Th
sinusoidal curve evaluated using Eq.~9! agrees well with the
energy data. The force is also well represented by the s
soidal Eq.~10!. This is to be expected becauseF is simply

FIG. 3. Illustration of the modified Newton’s method for orienting th
dimer. The force and the energy of the dimer for an Al adatom on Al~100!
are shown for a full rotation. The success of a sinusoidal fit to the dim
energy indicates that a quadratic approximation@Eq. ~9!# is a good approxi-
mation. A fit @Eq. ~10!# to the force acting on the dimer yields a minimum
dimer energy within the plane atu050.64937, in good agreement with tha
obtained from Eq.~13! using onlyF andF8 calculated atu50. The dashed
line shows the magnitude of the total rotational force. Atu5u0 this force
has no component in the plane of rotation.
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proportional to the derivative of the dimer energy with r
spect tou. A fit to these data~shown in Fig. 3! gives a value
of u0'0.649 37. This value, indicated by the vertical dash
line, corresponds well with the minimum in the dimer ener
within the rotation plane. In a simulation,Du is determined
from Eq. ~13!. For this example,F0 was found to be
4.453 12, andF08 was 22.4847, from whichDu was calcu-
lated as 0.649 36, in good agreement with the obser
value.

In summary, the quadratic approximation to the poten
provides a formula for rotating the dimer and zeroing t
rotational force within the plane. This is done by evaluati
the magnitude of the rotational forceF, the curvature of the
dimer energyF8, and evaluatingDu by substituting into Eq.
~13!. Figure 3 shows the magnitude of the total rotation
force. Once the dimer is rotated byDu, the rotational force
has essentially no component within the plane of rotation
is a bit disconcerting to see that the magnitude of the t
force drops by only 35% in the first iteration. This ratio
typical of the modified Newton method. This can be im
proved upon by considering conjugate gradients.

2. Conjugate gradient choice of rotation plane

Conjugate gradient methods tend to be more effici
than steepest descent methods because the force at bo
current iteration and the previous iteration are used to de
mine an optimal direction of minimization.21 We use a con-
jugate gradient algorithm for choosing the plane of rotati
while the minimization of the force on the dimer within
plane is carried out using the modified Newton method
scribed in the previous section. The conjugate grad
method as described in Ref. 21 cannot be applied directl
the dimer energy minimization. For rotation, the dime
midpoint and separation must be held fixed, which adds
additional constraint on the system. In this section, the tra
tional conjugate gradient method is first reviewed, and the
modification for the constrained dimer rotation is describ

The first step in the conjugate gradient minimization i
steepest descent step in which the direction of displacem
is given by the gradient,~or force!, F. The energy alongF is
then minimized. For subsequent iterations, the direction
displacements,G is taken to be a linear combination of th
current force,Fi , and the force at the previous iteratio
Fi 21 . The vectorG at iterationi is defined recursively:

Gi5Fi1g iGi 21 , ~14!

whereg i is the weighting factor

g i5
~Fi2Fi 21!•Fi

Fi•Fi
. ~15!

In the dimer method, the traditional conjugate gradie
method is modified in several ways to accommodate the c
straints implicit in the dimer rotation. Each minimization d
rection,G, becomes a plane of rotation spanned by the u
vectorQ̂ which is parallel toG', and the dimer orientation
N̂. The line minimization step is implemented with the mod
fied Newton’s method of the previous section. The differen
is that, for every step other than the first,Q̂ is not along the
forceF' as it was, but rather along the conjugate vectorG'.
d
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Equations analogous to Eqs.~14! and ~15! are used in the
conjugate gradient rotation scheme. For the first iterat
G'5F'. For thei th iteration

Gi
'5Fi

'1g i uGi 21
' uQ̂ i 21** ~16!

where

g i5
~Fi

'2Fi 21
' !•Fi

'

Fi
'
•Fi

' , ~17!

is the weighting factor between the rotational forceFi
' and

the old modified force vectorGi 21
' . The vectorGi 21 in Eq.

~14! has been replaced by the vectoruGi 21
' uQ̂ i 21** ~Fig. 2

shows howQ̂** is found!. This difference is due to the fac
that Gi 21

' was aligned alongQ̂i 21 . As described in the pre
vious paragraph, a vector which is perpendicular toN̂i within
the old rotation plane is needed. This is simply a vec
alongQ̂i 21** , with a magnitude equal toGi 21

' . The conjugate
gradient approach@Eqs. ~16! and ~17!#, including the modi-
fied Newton algorithm for line minimization@Eq. ~13!#, rep-
resents a significant improvement over a straightforward
plication of the standard conjugate gradient constraint for
dimer. The average number of force calls required to fin
saddle point in the Al/Al~100! study was reduced by a facto
of about 2.5.

C. Translating the dimer

Compared to rotation, the translation of the dimer is re
tively straightforward. The saddle point is a maximum alo
the lowest curvature mode, the reaction coordinate, an
minimum along all other modes. The dimer will orient itse
along the lowest curvature mode when the energy of
dimer is minimized by rotation. The net translational for
acting on the two images in the dimer,FR , tends to pull the
dimer towards a minimum, however. Therefore, a modifi
force, F†, is defined where the force component along t
dimer is inverted:

F†5FR22Fi. ~18!

Movement of the dimer along this modified force will brin
it to a saddle point. This is illustrated in Fig. 4. In principl
any optimization algorithm depending only on first deriv
tives can be used to move the dimer along the effective fo
to the saddle point.

We have used two different algorithms to translate
dimer. The first is similar to an algorithm that has been us
by others to find potential energy minima.22 We will refer to
this algorithm as the ‘‘quick-min’’ algorithm. A time step
size, Dt, is selected. This should be as large as possi
while still allowing the system to reach the convergence c
teria for the saddle point. The system is propagated from
initial position using a classical dynamics algorithm, with t
modification that only the projection of the velocity at th
previous step along the current force is kept. Additionally
the dot product of the force and the velocity becomes ne
tive, the cumulative velocity is set to zero

DV i5Fi
†Dt/m ~19!
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V i5H DV i~11DV i•V i 21 /DV i
2! if V i•Fi

†.0

DV i if V i•Fi
†,0

. ~20!

There is a problem with the algorithm described thus
when the dimer is started from a shallow minimum. If t
lowest curvature mode is along a contour of the poten
energy basin, the dimer can take a very long time to leave
basin, or even possibly become trapped there forever. A
lution to this problem is to treat regions where all mod
have positive curvature, theconvex regions, differently from
the regions where at least one mode has a negative curva
the nonconvex regions. The neighborhood of potentia
minima falls into the first category while the saddle po
region falls into the second category. Equation~18! is modi-
fied in the following way to ensure that the dimer quick
leaves convex regions:

F†5H 2Fi if C.0

FR22Fi if C,0
, ~21!

where C is the minimum curvature. In the convex regio
C.0, and the dimer follows this mode up the potential s
face until the lowest curvature becomes negative. It is p
sible thatC never becomes negative~an example of that in a
two-dimensional case will be given below!, in which case
the dimer continues to climb up the potential forever. T
problem is unlikely to occur in large atomic systems. W
never encountered it in the Al/Al~100! calculations described
below.

The second method we tried for translating the dim
was the conjugate gradient method. This was found to p
form better than quick-min in the Al/Al~100! calculations. In
the initial step, the system is minimized along a line defin
by the initial force. Analogous to the rotation algorithm, t
system is moved a small distance along the line~keeping the
dimer orientation fixed!, and the derivative in the magnitud
of the effective forces was calculated. Newton’s method
used to estimate the zero in the effective force along the
and the dimer is moved to that point. If the effective force
the line increases in the small step, the dimer is still in

FIG. 4. The effective forceF† acting on the center of the dimer is the tru

forceFR with the component along the lowest curvature modeN̂ inverted. In
the neighborhood of a saddle point, the effective force points towards
saddle point.
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minimum region, and Newton’s method calculates a s
backwards against the effective force, pulling the dimer ba
into the minimum. In this case, the dimer is simply mov
with the effective force a predefined step size. This algorit
tends to move the dimer out of the convex region quic
and in practice speeds up convergence to a saddle p
After each translation, the dimer is reoriented and th
moved along a direction conjugate to the previous l
minimization.21

D. Selecting initial configurations

In most systems, there can be a large number of sa
points leading out of the potential energy basin of interest
single saddle point search will generally not be enough
address the question of how the system tends to leave
basin. In general, it is necessary to knowall low lying saddle
points ~to within a few kBT from the lowest energy saddl
point! leading from a potential energy basin. While no exi
ing method can guarantee that all relevant saddle points
be found, reasonable progress may be made if there is a
to search for new saddle points in a manner that minimi
the number of duplications.

One simple approach is to start with a collection of in
tial configurations, scattered about the potential energy m
mum in the initial basin. In order to avoid high energy co
figurations, which might be spatially near the potent
minimum, a system can be evolved by classical dynamic
some finite temperature and configurations of the atoms
responding to maximal displacements from the potential
ergy minimum can be saved as initial configurations
saddle point searches. In other words, different saddle po
can be found if the initial configurations are drawn from t
high potential energy images within a thermal ensemble
the potential energy basin. This approach turned out to
quite successful. But, it is important to realize that so
saddle points can be systematically excluded when only
method is used. The configurations generated tend to
along low energy modes around the minimum and the dim
searches from these configurations tend to converge to
same saddle points, the saddle point lying at the end of a
curvature mode. These are, however, often the lowest en
saddle points. Starting with a random set of images displa
from the minimum, for example, a Gaussian distribution
displacements amounting to'0.1 Å in each coordinate, gav
a greater variety of saddle points and therefore better s
pling. The following section describes how different sadd
points can be found when starting from the same initial c
figuration.

E. Orthogonalization

The various mode following algorithms can converge
a variety of saddle points starting from the same initial co
figuration by following different normal modes.12–14,16There
is, however, no inherent relationship between the numbe
normal modes and the number of saddle points. The imp
tant aspect of the mode following algorithms is the orthog
nality of the modes, which tends to lead the system in d
ferent directions towards different saddle points. This kind

e
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orthogonality constraint can be built into the dimer meth
quite easily and with little increase in computational cost

From any initial configuration, the lowest curvatu
mode can be found with the dimer rotation method descri
in Sec. II B. When the dimer is rotated to its minimum e
ergy configuration, the dimer orientation is along the low
curvature modeN̂1 . Let the curvature along this mode b
denoted byC1 . The first saddle point search will typically b
launched with the dimer initially oriented along this mode.
is also possible to find the next lowest mode by again ro
ing a dimer to its minimum energy configuration but no
maintaining orthogonality to the vectorN̂1 . Orthogonaliza-
tion is carried out by simply subtracting any compone
alongN̂1 from the vectorsN̂, F1 , andF2 , while rotating the
dimer to a minimum energy. A new saddle point search
then be launched from the same initial configuration with
dimer initially oriented along the second lowest modeN̂2 . In
this second search, the orthogonality condition between
current orientation of the dimerN̂ and the initial orientation
in the first searchN̂1 is maintained until the curvatureC
along the dimer becomes lower than the curvature meas
along the directionN̂1 . This is not the same as requiring th
the curvature alongN̂ be lower thanC1 , the initial curvature
alongN̂1 . The requirement is thatN̂ gives the lowest curva
ture mode at the point on the potential energy surface w
the orthogonality constraint is dropped. WhenN̂ gives the
lowest curvature mode, there is no need to maintain the
thogonality condition to the vectorN̂1 because the dimer ha
no tendency to rotate into this now higher curvature dir
tion.

It is straightforward to continue this procedure to follo
systematically different directions. As long as the curvat
along the current lowest modeN̂ is greater than the curvatur
in one of the initial directions of earlier searches, then
orthogonality condition is maintained. These different sad
point searches can be carried out in parallel after the in
set of low lying modes (N̂1 ,N̂2 ,...) have been found. The
cost of these subsequent searches increases somewha
cause as long as the dimer does not lie along the low
curvature mode, the force and dimer energy must be c
puted for every initially lower mode. Two things save th
potentially poor scaling. First, there is no need to comp
the curvatures very often, and second, it has turned out
the dimer tends to escape the region where previous m
have lower curvature quite quickly. The combination of
distribution of initial configurations and orthogonalizatio
provides an efficient, highly parallelizable, method f
searching for saddle points leading out of a given poten
energy basin.

III. RESULTS

The characteristics of the dimer method have been s
ied using two model potentials. The first is a tw
dimensional model potential. The second is a system re
senting an Al adatom on an Al~100! surface—a system
containing 301 atoms.
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A. Two-dimensional test system

Simple potential surfaces which can be visualized ea
are important test cases for any saddle point search met
We have chosen a LEPS potential coupled to a harmo
oscillator because it illuminates some of the problems t
can be encountered in saddle point searches. The ana
form and justification for the potential are describ
elsewhere.4 The slowest ascent direction along2 ŷ from the
initial basin centered at~0.7655, 0.2490! does not lead to a
saddle point if a steepest ascent search is carried out a
this mode. Without modification, the potential has a sin
saddle point between the two large basins defined appr
mately by x,2 and x.2. We have added two Gaussia
functions to this potential to increase the number of sad
points leading out of the initial basin from one to four

Gi~x,y!5Aie
2~x2x0i

!2/2sxie2~y2y0i
!2/2syi. ~22!

The parameters of the Gaussian functions are given in T
I. Figure 5 illustrates how the dimer method works on th
potential surface.

A classical trajectory calculation was used to gener
three starting configurations for the saddle point searche
Fig. 5~a!. Dimers are placed at these initial points~the dimer
separation is much too small to be resolved!, and the subse-
quent saddle point searches following the lowest mode
using the quick-min algorithm are shown. There is a fai
sharp change in the two paths initially following the nea
vertical directions. These are the points at which the cur
ture along the dimer has switched from positive to negat
~the boundary of convex and nonconvex regions!, as dictated
by Eq.~21!. To begin with, in the convex region, the dimer
only moved up the potential surface along the lowest cur
ture orientation. After entering the nonconvex region, t
dimer is also being moved down along the force perpend
lar to the dimer orientation.

Figure 5~b! shows the results of saddle point search
using the orthogonalization algorithm. Two initial configur
tions were used and for each one the two lowest nor
modes were used in saddle point searches. The two sea
along 1 x̂ and 1 ŷ quickly converge to saddle points. Th
search following the softest mode along2 ŷ goes down to
about y5210 before locking onto the negative curvatu
mode alongx̂ and rotating by 90°. The minimization perpen
dicular to the dimer brings it back towards the saddle po
The second search from this same initial point brings
dimer in the2 x̂ direction, where no saddle point exists. It
convenient to specify both a maximum potential energy, a

TABLE I. Parameters for the Gaussian functions added to the t
dimensional test potential.

i 1 2

Ai 1.5 6.0
x0i

2.020 83 0.8
y0i

20.172 881 2.0
sxi

0.1 5.0
syi

0.35 0.7
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FIG. 5. Two algorithms for moving the dimer are compared, along with a mode following algorithm~Ref. 16!. The left-hand side figure shows a sho
molecular dynamics trajectory~dashed line!, and three initial configurations generated from the trajectory. The quick-min algorithm was used to mo
dimer along the lowest curvature direction. In the middle figure, two initial configurations were chosen on opposite sides of the minimum. F
configuration, two dimer search calculations were carried out, in one case following the lowest curvature direction, in the other following the neowest
curvature. The dimer moving off the plot to the right-hand side did not converge to a saddle point. The dimer which moved off the bottom of the ploted
after moving toy5210 and finally did converge to a saddle point. In this calculation, the conjugate gradient method was used to move the dim
right-hand side figure shows results of a mode following method requiring the diagonalization of the Hessian matrix. Qualitatively, the results of te dimer
method with orthogonalization are very similar to the results of the mode following method. This comparison is only feasible in a few dimensions bese the
mode following algorithm requires inversion of the Hessian matrix. None of the methods located one of the saddle points~in the upper right-hand side corne
of the basin!.
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a maximum number of allowed iterations so that a fai
search, such as this one, can be aborted without wastin
unreasonable amount of effort.

Figure 5~c! shows the results of a mode followin
method16 which relies on computing the Hessian matrix.
performs very efficiently on this test potential, finding thr
modes in an average of 16 moves each. In two dimensi
the cost of each move is small, but as the number of dim
sions increase the cost of evaluating and inverting the H
sian matrix increases rapidly~asn3!. Even if the number of
steps remains small, the total cost becomes prohibitive
large systems. It is reassuring to see that the orthogona
dimer searches mimic the attractive features of the m
following algorithm without having to evaluate the Hessi
matrix.

It is instructive to identify which initial points lead th
dimer to a given saddle point. Figure 6 shows the basin
attraction for the various saddle points of the tw
dimensional test problem when only the lowest mode is
lowed. A test dimer was placed at an array of initial poin
The shaded areas are the regions of the potential in which
dimer rotated into a negative curvature mode, indicating t
there is at least one negative curvature mode at that p
Each dimer was then moved in the direction of the effect
force to a saddle point. The regions are shaded accordin
an
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which saddle point the dimer moved to. In this way, t
negative curvature region is further divided up into four b
sins of attraction, one for each saddle point. If the dimer
started outside of the shaded region, it can still converge
saddle point as shown in Fig. 5, by moving up the poten
along the lowest~positive! curvature mode until it reaches
basin of attraction. Once the dimer reaches a basin of att
tion of a saddle point, it is most likely to converge to th
saddle point. Therefore, images which start around the
minimum will not reach saddle point 3.

It is fairly clear then why none of the images start
around the left minimum reached saddle point 3. They wo
have to pass through basins 2 or 4 before getting to the b
around saddle point 3. This illustrates a limitation of t
dimer method. If a saddle point has a basin which is s
rounded or separated from the initial configuration by oth
saddle point basins, it is very unlikely for the dimer meth
to find it. Another limitation of the method can be seen
considering saddle point 3. This saddle point connects
two minima on the left by a rather curved minimum ener
path. Dimers that are started from the minimum on the ri
following the 1 ŷ mode converge to saddle point 3. But th
is not a saddle point leading out of that minimum. This is
problem when the goal is to find all saddle points leading
of a given minimum. It is easy enough to check if a giv
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saddle point is relevant for a given initial state, but the c
of finding it can be a wasted effort. This effect is observed
the aluminum system as well as this two-dimensional pot
tial.

B. Al adatom on an Al „100… surface

We now turn to a study of transition mechanisms in
system where an Al adatom is initially sitting in the fourfo
hollow site on Al~100! surface. The goal is to find all mecha
nisms by which the system can escape from this initial s
with an activation energy less than about 1 eV. An embed
atom potential, similar to that of Voter and Chen,23 was used
to model the atomic interactions. The energy of the two lo
est saddle points predicted by this potential turn out to
close to the results of density functional theo
calculations,19 indicating that the potential function is rea
sonably accurate. The substrate consists of 300 atoms, 5
layer in six layers. The bottom two layers are held frozen a
the top surface is left open to vacuum. A single Al adatom
placed on the surface bringing the total number of degree
freedom to 603.

The dimer method was run starting from 1000 random
chosen configurations around the minimum. A cluster
cluding the adatom and 25 nearby substrate atoms was
placed according to a Gaussian probability distribution w
a width of 0.1 Å along each coordinate. The conjugate g
dient method was used both to rotate and translate the di
Values of the finite difference steps for rotation and trans

FIG. 6. Regions of attraction around each saddle point. The shaded re
correspond to points with at least one negative curvature mode. The d
ent shades of gray indicate which saddle point the dimer will converge t
limitation of the method is apparent here. A dimer starting from the ini
basin on the left-hand side will not be able to find saddle point 3, wh
represents one of the escape routes from the basin, without first visitin
basin around saddle point 2 or 4.
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tion were du51024 rad anddR51023 Å, respectively. A
maximum translation distance was set at 0.1 Å, and
dimer separation was set atDR51022 Å. The tolerance for
convergence to a saddle point was set atuFu,1024 whereF
is the 3n dimensional force vector.

A summary of the results is shown in Fig. 7. Of the 10
dimer searches, 990 converged to saddle points below 2
Three searches failed to converge within the imposed limi
2000 iterations. Seven of the searches converged to the
wavelength, high energy mode~with activation energy of'5
eV! corresponding to a concerted shift of the 51 surface
oms by one lattice constant. The energy of the saddle po
were binned and the number of searches within each bi
shown in the histogram in Fig. 7. The average computatio
cost to find the saddle points within each bin is given
terms of the number of force evaluations. The average n
ber of force evaluations needed to converge on a saddle p
was 400, that is 200 per image in the dimer. The three low
energy saddle points attracted 78% of the 1000 dim
~saddle points that are equivalent by symmetry are grou
together!. These are the exchange process involving two
oms found by Feibelman,19 the hop, and a remarkably low
four atom exchange process~see Fig. 8!. A three atom ex-
change process has the fourth lowest saddle point. No t
sition mechanisms were found with saddle point energy
the range 0.44–0.76 eV, but above this energy gap there
large number of different processes with saddle point ene
up to about 1.5 eV. Figure 8 shows the ten lowest ene
transitions. The initial state, saddle point, and final state
shown. The energies listed below each transition number
the energy of the saddle point configuration with respect t
configuration of an adatom on a flat surface.

Once the dimer has converged to a saddle point, i

ns
r-
A
l
h
he

FIG. 7. The result of 1000 saddle point searches using the dimer metho
an Al adatom on an Al~100! surface. Each search starts from a point ra
domly displaced from the potential energy minimum, using a Gaussian
tribution with a width of 0.1 Å in each coordinate of 25 atoms including t
adatom and its neighbors. A large number of saddle points was found.
histogram shows how many of the dimers converged on saddle points in
given energy range. The processes corresponding to the ten lowest e
saddle points are shown in Fig. 8. A total of 60 processes below 2.0 eV w
found, most of them in the range of 0.8–1.5 eV. The filled circle shows
average number of force evaluations required to converge to the sa
points within each bin. The bars show the range between the shortes
longest search. On average 400 force evaluations~200 per image in the
dimer! were needed to converge to a saddle point~dashed line!.
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FIG. 8. The ten lowest energy trans
tion mechanisms found in 1000
searches using the dimer method. A
on-top view of a small section of the
surface is shown in the initial state
~left-hand side!, saddle point~middle!,
and final state~right-hand side!. The
atoms are shaded by depth, and the
oms that move the most are labele
The energy of the saddle point con
figurations is given in eV with respec
to an Al adatom in the fourfold hollow
site on the flat Al~100! surface. In ad-
dition to the two atom exchange pro
cess~process 1, discovered by Feibe
man! and the hop~process 2!, a four
atom exchange mechanism~process 3!
and a three atom exchange mechanis
~process 4! are found to be low energy
diffusion mechanisms. Other pro
cesses correspond to an adatom g
ting buried in the surface~process 5!,
vacancy formation~processes 6, 7, 9
and 10!, and a four atom exchange dif
fusion mechanism involving a secon
layer atom~process 8!.
fir
un
rd
th
of
-

th
g

us

th

he
p
t
ec
c
th
an
na

t
ac
th
ia
to
e.
5
e

be
iff

o
o

er
imer
e
dle
us

this
n a
ts are

a
of
rch

ints
d so
s 5,
to a
easy to trace out the minimum energy path. The dimer is
allowed to rotate into the lowest curvature mode, the
stable mode, so that it is aligned along the reaction coo
nate. An image is placed on one side of the dimer along
directionN̂1 . The distance of the image from the midpoint
the dimer~the saddle point! is chosen according to the de
sired resolution of the path. In a manner very similar to
algorithm used to rotate the dimer, the energy of this ima
is minimized while keeping its distance from the previo
image~in this case the saddle point! fixed. This procedure is
repeated, each time placing a new image initially along
local path ~the line between the two previous images! to
minimize the number of function calls required to zero t
tangential force on the new image. The process is stop
when the minimum energy of an image is greater than tha
the previous image. After the path is traced out in one dir
tion from the saddle point to a minimum, the opposite dire
tion must be followed to complete the minimum energy pa
This method was used for the ten saddle points of Fig. 8
the energy paths are shown in Fig. 9. The reaction coordi
is scaled so that the distance between the minimum and
saddle point is 1 unit. The paths which do not terminate b
at an energy of zero, the energy of a single Al adatom on
Al ~100! surface, lead to other local minima on the potent
energy surface. The final state of path 5 corresponds
stable arrangement with the adatom buried in the surfac
group of four atoms in the surface layer has rotated by 4
The final states of paths 6, 7, and 10 at approximately 0.7
are arrangements in which an addimer/vacancy pair has
created. Path 8 corresponds to a four atom exchange d
sion mechanism involving a second layer atom.

Several orthogonal dimer searches were then carried
from the 1000 initial configurations described above. F
st
-
i-
e

e
e

e

ed
of
-
-
.
d
te
he
k
e
l
a
A
°.
V
en
u-

ut
r

each initial configuration, a total of eight orthogonal dim
searches were carried out. In each successive run, the d
orientation is orthogonalized to the initial orientation of th
dimer in the previous runs. After each search, the sad
point obtained was compared to those found in previo
searches started from the same initial configuration. In
way, an average chance of finding a new saddle point i
subsequent, orthogonal search was estimated. The resul
shown in Fig. 10. On average, the second search from
given initial configuration led to a new saddle point 60%
the time. A new saddle point was found in the third sea

FIG. 9. The minimum energy paths corresponding to the ten saddle po
identified and shown in Fig. 8. The reaction coordinate has been scale
that21 represents the initial minimum and 0 the saddle point. Transition
6, 7, 9, and 10 lead to final state local minima which do not correspond
single adatom on the Al~100! surface and are therefore asymmetric.
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about 40% of the time. During the course of these simu
tions, many new transition mechanisms for the Al/Al~100!
system were found. Some of the more interesting low ene
saddle points are shown in Fig. 11. A transition involving t
formation of a local hex reconstruction in the surface laye
the saddle point was found. In the final state of the transit
a group of four surface atoms has rotated so as to exch
places~process 1!. A similar rotation of four surface atom
also occurs in the second transition shown in Fig. 11.
addimer/vacancy pair forms in several of the transitions~pro-

FIG. 10. For each one of the 1000 random initial configurations, a tota
eight dimer searches were carried out with each subsequent search ort
nalized to the initial orientation of the dimer in previous searches. T
saddle point obtained in each run was compared to the saddle points f
in previous searches started from the same initial configuration. The fi
shows the average fraction of searches which lead to a new saddle poin
example, after a saddle point was found by following the lowest curva
direction, the chance of finding a new saddle point when a second low
orthogonal direction was followed is approximately 60%. The chance
finding a new saddle point when the third lowest mode is subseque
followed is approximately 40%.
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cesses 3, 4, and 7!. For some of the transitions, neither th
initial nor the final state corresponds to an adatom on a
surface~processes 5, 6, and 8!, illustrating that the dimer
does not always converge on saddle points correspondin
escape routes for the potential energy basin where the in
point of the search is located.

C. Scaling with system size

The motivation behind the dimer method is to devel
an algorithm which scales well with system size. Most of t
savings over the mode following methods, such as
Cerjan–Miller method, is a result of not having to evalua
and invert the Hessian matrix. The dominant computatio
effort in the dimer method involves computation of the for
on the atoms, so the effort can effectively be measured by
number of force evaluations required to converge on a sa
point. The more degrees of freedom there are in the sys
the more iterations are needed to orient and translate
dimer. An important question is how the computational
fort scales with the number of degrees of freedom. The ma
mum number of degrees of freedom was obtained in
Al/Al ~100! system by freezing only 55 atoms at the botto
of the substrate leaving the method to explore the remain
738 degrees of freedom. In the other extreme, only the a
tom was allowed to move, making 3 the minimum number
degrees of freedom. The average cost of finding an ensem
of saddle points was computed for eight configurations w
more and more of the substrate atoms frozen. For the m
restricted systems with fewer than 70 degrees of freedom
hop was the only process found. The dimer method c
verged with about 70 force evaluations in these simulatio
For simulations with fewer frozen atoms the full range
saddle points was found. This distribution was fairly inse
sitive to the number of degrees of freedom beyond 70. T
average number of force evaluations for these runs is
proximately 400, the same as what was shown in Fig. 7. T
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FIG. 11. Searches using orthogon
directions led to many new transition
for the Al/Al~100! system. Some of
the more interesting low energy trans
tions are shown in the figure. The firs
transition shows the formation of a lo
cal hex reconstruction in the surfac
plane at the saddle point. In the end,
rotation of a group of four surface at
oms has occurred. A similar rotation
also occurs in the second transition
An addimer/vacancy pair forms in
transitions 3, 4, and 7. Neither the ini
tial nor the final state in transitions 5
6, and 8 corresponds to an adatom o
a flat surface, illustrating that the
dimer does not always converge o
saddle points corresponding to esca
routes for the potential energy basi
where the initial point of the search is
located.
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data in Fig. 12 show that the method is relatively insensit
to increasing the number of dimensions in the problem,
long as all processes are available to the system. This is
encouraging since it indicates that the dimer method sho
be useful for finding saddle points in large and complex s
tems.

IV. DISCUSSION

Finding the mechanism and estimating the rate of a
vated transitions from a given initial state boils down to
cating the low energy saddle points at the rim of the poten
energy basin corresponding to the initial state~if the har-
monic approximation to transition state theory is a good
proximation!. For problems involving diffusion of atoms in
and on crystals this problem is tractable, but far from trivi
Preconceived notions of the transition mechanism can be
correct, as exemplified by the diffusion of an adatom on
Al ~100! surface, which was thought to occur by simple ho
of the adatom from one surface site to another until Feib
man discovered that an exchange mechanism is significa
lower in energy.19 A systematic procedure for finding sadd
points is needed for such systems.Ab initio calculations of
small molecules have over the last decade made use o
efficient mode-following algorithm.12–14,16This method has
also been applied to small clusters described by empir
potentials, but the mode following algorithm scales poo
with size, making it inefficient for solid state applications.
also requires knowledge of second derivatives of the po
tial energy with respect to the coordinates of the atoms, p
venting its use in the highly successful plane wave ba

FIG. 12. The scaling of the computational effort for the dimer method
measured by number of force evaluations, as a function of the system
These data are taken from the Al/Al~100! system. The substrate consisted
300 atoms, 50 atoms per layer. Starting with all movable atoms, the num
of degrees of freedom was gradually reduced by freezing more and mo
the substrate atoms so they became effectively removed from the cal
tion. If an atom is frozen the dimer cannot be oriented in these degree
freedom, and the forces on frozen atoms do no affect the dimer. For
smallest number of degrees of freedom, the only mechanism found wa
hop. When more than 20 atoms were unfrozen, the full range of sa
points was found. In this region, the plot shows a remarkably slow incre
in cost with system size, especially if compared to then3 scaling of mode
following algorithms which involve the inversion of the Hessian matrix.
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DFT calculations of solids and surfaces of solids.~Some ex-
amples of DFT studies of surface diffusion are Refs.
24–27.! The dimer method presented here can be applie
large systems and since it only relies on first derivatives
the energy, it can be used in conjunction with plane wa
based DFT calculations of the atomic forces. We are c
rently implementing the dimer method in a plane wave D
code.

An essential aspect of the dimer method is a highly o
timized algorithm for rotating the dimer into the lowest e
ergy orientation. This makes it feasible to use the method
conjunction withab initio atomic forces. The calculations fo
the Al/Al~100! system took on average 400 force evaluatio
to converge on a saddle point. Since the force calculation
the two images in the dimer are independent, the dim
method parallelizes almost perfectly over two processor
the force evaluation is computationally intensive as inab
initio calculations. This means the computational effort
200 force evaluations per processor. In order to find the
of low lying saddle points, a few saddle point searches h
to be carried out. In the Al/Al~100! system, approximately
ten searches would suffice to find the three to four low
saddle points. Using either a collection of randomly chos
initial points or orthogonal searches from a given initial po
~or a combination of both!, the different saddle poin
searches can be carried out in parallel. The algorithm w
therefore, be particularly useful when a cluster of process
is available for the computations.

Note added in proof. After submitting our manuscript we
have learned of a new method by Munro and Wales@Phys.
Rev. B 59, 3969 ~1999!# which also enables saddle poin
searches with only first derivatives.
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