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Abstract

We have carried out long time scale simulations where the \dimer method" [G. Henkelman
and H. J�onsson, J. Chem. Phys. 111, 7010 (1999)] is used to �nd the mechanism and estimate
the rate of transitions within harmonic transition state theory and time is evolved by using
the kinetic Monte Carlo method. Unlike traditional applications of kinetic Monte Carlo, the
atoms are not assigned to lattice sites and a list of all possible transitions does not need to be
speci�ed beforehand. Rather, the relevant transitions are found on the 
y during the simulation.
An application to the di�usion and island formation of Al adatoms on an Al(100) surface is
presented.

1 INTRODUCTION

One of the greatest challenges in computational studies of atomic systems is the simulation of long
time scale evolution. While it is relatively straightforward to iteratively solve Newton's equations,
the time scale that can be simulated that way, even when the simplest interaction potentials are
used, is only on the order of nanoseconds for a typical system size and a weeks worth of CPU time
on a modern computer. In chemistry and materials processing, most interesting transitions are
thermally activated and take place on the time scale of microseconds or even seconds. The disparity
of time scales is huge and it is clearly necessary to develop di�erent methods for simulating time
evolution.

Fortunately, there is often a separation of time scales. Vibrational motion of atoms occurs on
the short time scale of femtoseconds. For a typical chemical reaction or di�usion event, there are
on the order of 1010 vibrations before there is a suÆciently large 
uctuation of thermal energy in
the right degree of freedom for a transition to take place. Instead of following each vibration and
waiting for these rare events, one can use transition state theory (TST) [1, 2, 3, 4, 5, 6] to calculate
the average amount of time necessary for the system to make a transition. In order to calculate
a rate, a bottleneck through which the system must pass in order to make the transition must be
identi�ed. This is the so-called transition state. For solid state systems, it is often possible to
assume that the system is harmonic near the energy minimum representing the initial state and
near a saddle point on the energy surface in the transition state. In this case, there is a simple form
of TST referred to as harmonic transition state theory (hTST), in which the rate of a transition,
k, can be directly related to properties of the initial state energy minimum and the saddle point
[7, 8],
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Figure 1: The temperature dependence of the rate of two di�erent transitions is shown. The
transition with the lower energy barrier corresponds to the line with shallower slope. A typical
situation is shown in which the higher barrier transition has a higher prefactor (intercept with
vertical axis). At low temperature, on the right side of the graph, the rate of the low barrier
transition will be higher than that of the high barrier transition, and the dynamics will be dominated
by events with low activation energy. At high temperature, the dynamics will be dominated by the
higher entropy transition which has higher activation energy. This illustrates why a system cannot
simply be heated to �nd events that occur on a longer time scale at low temperature.

Here, Ez is the energy of the saddle point, Einit is the local potential energy minimum corresponding
to the initial state, and the �i are the corresponding normal mode frequencies. The symbol z refers
to the saddle point. All the quantities can be evaluated from the potential energy surface, at
zero temperature, but thermal and entropic e�ects are included through the harmonic partition
functions. The most challenging part in this calculation is the search for the relevant saddle point(s).

One possible method of increasing the rate of rare events is to simply heat the system. If the
atoms have more thermal energy, they will be more likely to undergo transitions. Unfortunately this
technique can lead to qualitatively di�erent dynamics than at the lower temperature of interest.
The situation is illustrated in Fig. 1. The temperature dependence of the rate of two di�erent
transitions is shown, one with a low activation energy and the other with a high activation energy.
At low temperature, the low barrier transition will have a higher rate and dominate the dynamics.
At high temperature, entropy becomes more important and the transition with a larger prefactor
dominates, namely the high barrier transition.

Several methods have been proposed for accelerating the dynamics of rare events. Voter has
developed several important methods. One is hyperdynamics [9, 10] which involves the creation of
a repulsive bias potential which �lls in regions around potential energy minima but does not a�ect
the potential energy rims separating the energy basins, including the saddle points. In another
method, proposed by Sorensen and Voter, so-called temperature accelerated dynamics (TAD) [11],
the temperature of the system is increased, but the dynamics are carried out in such a way that only
the transitions that would have occurred at a lower temperature are extracted. Finally, Voter has
developed a method called parallel replica dynamics in which many trajectories are run in parallel
while waiting for transitions to occur [12]. This method accelerates the simulation time required
to see a transition by using many processors.

In this work we combine the dimer method [13] for �nding saddle points and rate calculations
within hTST with a kinetic Monte Carlo (KMC) method for simulating the evolution of systems
over long time scales. This method is easy to implement and, compared to existing methods, may
require less computational time for small systems.
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2 THE LONG TIME DYNAMICS METHOD

In order to carry out the simulation of a transition in the system, the rate and mechanism of all
the relevant transitions from a given initial state need to be known. Within hTST this corresponds
to �nding all the low energy saddle points on the rim of the potential energy basin corresponding
to the initial state. The dimer method is used to search for these saddle points.

2.1 THE DIMER METHOD

In the long time scale calculations presented here, between 25 and 50 dimer searches were launched
from each new potential minimum visited. Dimer searches were started from con�gurations close to
potential minima. The easiest way to choose a starting position is to make a random displacement
away from the minimum. If all the atoms in the system are included in the random displacement,
the dimer search can be biased towards �nding higher energy transitions which involve many atoms.
We �nd that it is better to displace only atoms within a local region. For each dimer search in
the Al(100) ripening calculations (described in section 4), an under coordinated surface atom was
chosen at random to be the center of the initial, local displacement. The displacements had a
Gaussian distribution with a mean of 0.2 �A in each degree of freedom. The region consisted of
the central atom and its �rst and second neighbors. We have found that a continuous distribution
is better than a �xed displacement size because it increases the variety of saddle points found.
In principle, a scheme like this can eventually �nd all saddle points around a minimum simply
because the starting points of the dimer search can be at any point in space. In practice, there is
no guarantee that a complete list of saddle points can be found in a reasonable amount of time.

The dimer method is described in more detail in a previous publication [13]. The dimer is made
up of two images (replicas) of the system. These images are separated in space by a �nite distance
displacement along a vector N̂. For an empirical potential this can be small. Here we have used
0.005 �A. Initially N̂ has non-zero elements only in the degrees of freedom along which the system
was displaced.

There are two parts to each dimer move. The �rst part is dimer rotation. The lowest energy
orientation of the dimer is along the lowest curvature mode. If the dimer is free to rotate, the forces
acting on the two images will pull the dimer to the lowest curvature mode. This is done by de�ning
a rotational force which is the di�erence in the force at the two images. Minimizing the energy of
the dimer with respect to this rotational force aligns the dimer with the lowest curvature mode (this
feature was used by Voter in his construction of bias potentials in hyperdynamics [10]). A modi�ed
Newton's method can be used to make this rotation eÆcient [13]. An important aspect of the dimer
method is that it only requires the �rst derivative of the energy, not the second derivatives.

The second part of the algorithm is translation of the dimer. A �rst order saddle point on
a potential surface is at a maximum along the lowest curvature direction and a minimum in all
other directions. In order to converge to a saddle point, the dimer is moved up on the potential
energy surface along the lowest curvature mode, but down in all other directions. This is done by
de�ning an e�ective force on the dimer in which the true force due to the potential acting at the
center of the dimer has the component along the dimer inverted. Minimizing with respect to this
e�ective force moves the dimer to a saddle point. With empirical potentials, minimization using
the conjugate gradient method works well.

It is not necessary to fully converge the dimer orientation at each translational step. We have
found it most eÆcient to pick a certain tolerance for the rotational force. This sets how precisely
the dimer is oriented along the lowest curvature mode before it is moved. The dimer is rotated at
least once and possibly a few times until the rotational force is less than the speci�ed tolerance. In
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these calculations the maximum rotational force was set at 5 meV/�A.
The dimer requires on average 400 force evaluations to converge on a saddle point. Other

methods for �nding saddle points using only �rst derivatives of the energy have been proposed
[14, 15], but it is unclear how their eÆciency compares with the dimer method.

2.2 KINETIC MONTE CARLO

KMC is a powerful method that can be used to extend the timescale of simulations far beyond
the vibrational timescale. In a typical KMC simulation, all transitions that can ever occur in
the system, along with their rates, must be known before the simulation starts. Then, given any
con�guration of the system, a table of all possible transitions and corresponding rates needs to
be constructed. The rates can be estimated using TST if the energy surface is known [16]. The
problem here is to identify and tabulate all relevant transitions ahead of time. This limits the
applicability of the method to simple systems where it is possible to guess which transitions are
important. Systems that can undergo complicated transitions involving several atoms, such as the
aluminum system described in section 3, or in which atoms do not sit at lattice sites are extremely
diÆcult to model with this approach.

If a list of possible transitions for a given initial state is available, a random number can be
used to choose one of the transitions and let the system evolve to a new state. The probability of
choosing a transition is proportional to its rate, ri. On average, the amount of time that would
have elapsed in order for this transition to occur is

�t =
1
P

ri

; (2)

which is independent of which transition got chosen. It may also be important to include the
appropriate distribution of escape times. For random uncorrelated transitions, this is a Poisson
distribution. If � is a random number from 0 to 1, the elapsed time for a particular transition is
given by

�t =
� ln�
P

ri

: (3)

The system is then advanced to the �nal state of the chosen transition and the process then
repeated.

2.3 COMBINED DIMER AND KINETIC MONTE CARLO

The dimer method can be used to relax some of the limitations of the traditional implementation of
the KMC scheme. If the dimer method is used to �nd possible transitions, there is little limitation
on the complexity in terms of the number of atoms or the spatial extent of the transition. Also, the
energy barriers do not need to be known before the calculation is started. Furthermore, the atoms
do not need to be mapped onto a lattice and it is not necessary to anticipate all possible states of
the system.

When a new minimum structure is visited, a swarm of dimer searches is sent out. For the
calculations described in section 4, either 25 or 50 dimer searches were used. The results of the
searches are collected. The system is quenched on either side of each saddle point in order to verify
that it lies on a minimum energy path from the given initial state minimum. In the same way as
described in section 2.2, a transition is chosen from the list, the system is advanced to the �nal state
of that transition, and the time interval associated with the transition is added to the accumulated
time.
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3 APPLICATION TO AL(100) DIFFUSION
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Figure 2: The four lowest energy transitions found with the dimer method for the di�usion of an
Al adatom on Al(100). For each transition, the initial state, the saddle point con�guration, and
the �nal state are shown. Atoms are shaded by depth and the atoms with the greatest movement
in each transition are labeled. The energy is given in eV. The lowest energy di�usion process is a
two-atom concerted displacement (1). The hop (2) is of similar energy to a concerted displacement
involving thee (3) and four atoms (4). Because adatoms can so easily displace atoms in the surface,
the Al(100) surface displays a great variety of transitions which would be hard to �nd by guesswork.

Di�usion and island formation of Al adatoms on an Al(100) surface was chosen as a test problem
for this simulation method for a couple of reasons. First, a successful embedded atom potential of
the Voter and Chen form exists for aluminum [17]. Also, this system has been extensively studied
with the dimer method in reference [13]. There, it was shown that there are many transitions
possible even for a single adatom on the Al(100) surface. The four lowest energy transitions found
with the dimer method are shown in Fig. 2. A particularly interesting aspect of the Al(100) system
is that an concerted displacement process has a lower energy barrier than the direct hop. This was
shown by Feibelman with density functional theory calculations [18].

The dimer method was able to �nd a wide range of transitions from an initial state consisting
of a single adatom in a four fold hollow site on Al(100). The substrate consists of 300 atoms,
50 per layer in 6 layers. The bottom two layers are held frozen and the top surface is left open
to vacuum. Sixty di�erent transitions were found with 1000 dimer searches. On average the low
energy processes: the concerted displacement involving two, three and four atoms, and the hop,
were found three quarters of the time. One quarter of the time a wide collection of higher barrier
transitions were found.

In the KMC scheme, it is important to �nd all the relevant transitions, i.e. transitions with
low activation energy. Using the statistics found for the single adatom di�usion events, there is
an 80% certainty of �nding all four (degenerate) two-atom concerted displacements with 50 dimer
searches. For an accurate simulation, this indicates that there should be many dimer searches at
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t = 0 nsn = 1 t = 6 nsn = 10

t = 8 µsn = 1000t = 70 nsn = 344

Figure 3: Snapshots from a simulation of Al adatoms on an Al(100) surface. Initially twenty atoms

were deposited at random on the surface. After 6 ns (10 transitions) all the adatoms have merged

to form clusters. After 70 ns (344 transitions) a large, compact island has formed, but there are

still two outlying islands. The trimer in the upper left has four possible rearrangements with a low

activation energy. Many of the 344 transitions correspond to these rearrangements, but since old
con�gurations are stored during the simulation the repeated transitions do not require new dimer

searches. After 8 �s (1000 transitions) the large island has taken a more compact shape and merged

with one of the smaller islands. Of the 1000 total transitions in the simulation, 139 were distinct

con�gurations and required new dimer searches.

each step. Fortunately, they can easily be carried out in parallel on separate computers. But, even

with a modest number of searches, the method can give a good, qualitative idea of how the system

will behave over long time intervals.

4 ISLAND RIPENING

The results of a kinetic Monte Carlo simulation coupled with dimer searches is shown in Fig 3.

Initially 20 atoms were randomly deposited on the Al(100) surface using classical dynamics. Then

the system was quenched to the local energy minimum. This con�guration is shown in the �rst

panel (n=1). The time evolution of the system at 300 K was then simulated. For each transition,

25 dimer searches were used to �nd the possible transitions. On average, 17 distinct transitions

were found from the 25 dimer searches. When 50 dimer searches were used, this number rose to 23,

showing that some transitions were missed when only 25 searches were carried out. During the �rst

10 transitions, the adatoms move via the concerted displacements or hops to form clusters. After

344 transitions, a large island has formed, but two smaller islands also exist. After 1000 transitions,

one of the small clusters has merged with the large island which has taken a more compact shape.
It takes nearly 8000 transitions before the other three-atom island merges with the larger island.

Of the �rst 1000 transitions, only 139 brought the system to a new state. Many transitions
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Figure 4: In a system of twice the size, there are on average twice as many available transitions.

If P1 and P2 are possible transitions in the original system, there are two more transitions, P3

and P4, possible in the larger system. In the simplest possible implementation of the simulation

method, this means that the number of dimer searches increases linearly with system size. But,

if the transitions are local, only a limited region of the system is a�ected and will require new

dimer searches. Also, saddle points closer to the transition region may only be slightly a�ected and

previously found saddle point con�gurations can be reconverged with just a few dimer iterations.

The number of dimer searches needed per transition does not, therefore, increase with system size.

However, the time increment for each transition is only half as large in the larger system.

involved rearrangements of the three-atom cluster shown in the last two panels of Fig. 3. After each

transition, the �nal state is compared to a table of all the previous con�gurations of the system.

If the state has been seen before, no dimer searches are performed. Rather, the next transition is

chosen from the old list of possible transitions. In this way, repeated transitions do not contribute

signi�cantly to the computational time, even if they occur frequently.

5 EFFICIENCY

It is important to know how a simulation method scales with system size. To determine this, we can

consider how the number of force evaluations changes when the system is doubled in size. Force

evaluations are considered rather than total computational time, because the evaluation of the

force can scale di�erently depending upon the complexity of the interaction potential. In favorable

situations, evaluation of the force scales linearly with system size.

Figure 4 shows an illustration of a system which has been doubled in size by joining two identical

replicas of the system. In the larger system, there are twice as many possible transitions. In the

crudest implementation of the simulation method, the number of dimer searches would then increase

in proportion to the system size. If, however, the transitions are local, i.e. they only involve a small

subset of the atoms, then large portions of the system will be una�ected by any one transition.

Transitions that can take place in these una�ected regions will not require repeated dimer searches

for saddle points. Rather, only the transitions which are a�ected by the last transition need to

be updated and new transitions need to be added only for the region where the last transition

took place. With the dimer method, it is also relatively straight forward to reconverge a set of

known saddle points which have changed only slightly because of a nearby transition. Therefore,

if the transitions are local, the number of new dimer searches that need to be carried out after a

transition has occurred will not change as a function of the system size.
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Another aspect to the scaling is the time increment at each transition. When the system size
is doubled, there are on average twice as many transitions possible. The time increment for each
transition will then be half as long, as can be seen from Eq. 2. If the simulation is carried out in
such a way as to cover a �xed time interval, then twice as many transitions need to be simulated
in a system that is double in size. The number of force evaluations required to simulate a �xed
length of time, therefore, scales linearly with system size.

This method for carrying out long time scale dynamics simulations is eÆcient enough for it to be
implemented with �rst principles calculations of atomic iterations such as density functional theory.
We have implemented the method in the VASP code [19, 20, 21, 22]. More information about the
implementation can be found on the web site http://ikazki01.chem.washington.edu/vasp/. We are
currently applying the technique to the formation and break-up of boron clusters in silicon [23] and
the di�usion of self-trapped excitons in silica glass [24].
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