

Improved Charge Carrier Transport of Hydrogen-Treated Copper Tungstate: Photoelectrochemical and Computational Study

Wenlong Guo,^{a,b} Zhiyao Duan,^c Oluwaniyi Mabayoje,^d William D. Chemelewski,^e Peng Xiao,^f Graeme Henkelman,^c Yunhuai Zhang,^{b,z} and C. Buddie Mullins^{a,d,e,*,z}

^aMcKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-0231, USA ^bCollege of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China

^cDepartment of Chemistry and the Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, USA

^dDepartment of Chemistry and Biochemistry, Center for Electrochemistry, and Center for Nano- and Molecular Science, University of Texas at Austin, Austin, Texas 78712-0231, USA

^eTexas Materials Institute, University of Texas at Austin, Austin, Texas 78712-0231, USA ^fCollege of Physics, Chongqing University, Chongqing, 400030, People's Republic of China

Thin films of copper tungstate (CuWO₄) have been prepared through electrodeposition and tested as the anode material for photoelectrochemical (PEC) water oxidation. We found that hydrogen-treatment over the synthesized CuWO₄ at high temperatures led to enhancement in the PEC performance for water oxidation. The origin of this activity enhancement is attributed to the enhanced kinetics of electron-hole pair separation due to the increased carrier concentration induced by oxygen vacancy formation upon hydrogen-treatment. The incorporation of oxygen vacancies also resulted in enhanced light absorbance in the visible light region because they introduce shallow donors as predicted by first-principles calculations. Nevertheless, incident photon to electron successfully utilized to oxidize water. This report provides insights on the effect of hydrogen-treatment on the structural, optical, and electronic properties of CuWO₄.

© 2016 The Electrochemical Society. [DOI: 10.1149/2.0701610jes] All rights reserved.

Manuscript submitted June 28, 2016; revised manuscript received August 10, 2016. Published August 19, 2016.

Solar energy is a sustainable and abundant energy source which has the potential to alleviate energy and environmental issues caused by the large-scale consumption of fossil fuels and also to simultaneously fulfill the ever-increasing energy demand of mankind.¹ Among a variety of fuels that can be produced by artificial photosynthesis, solar production of hydrogen from protons through photoelectrochemical (PEC) water splitting stands out and provides a viable, clean, low cost, and renewable energy source.^{2,3} Stimulated by the possibility of using hydrogen from water as a source of energy, a significant amount of research has been devoted to searching for efficient semiconductor materials as electrodes for the PEC water splitting since the pioneering work of Fujishima and Honda on n-type TiO₂ photoelectrodes in 1972.⁴ Despite continuous efforts over decades, the search for a suitable electrode that could lead to the practical application of PEC water splitting for hydrogen production has so far failed due to the harsh and even contradictory requirements an ideal electrode should meet, such as sufficient bandgap, proper band edge positions, ability to utilize visible light, low rate of electron-hole recombination, suppression of reverse reactions, insolubility in water, and high corrosion resistance, to name a few. TiO₂ suffers from the inability to harness visible light due to its large bandgap (3-3.2 eV).^{5,6} α -Fe₂O₃ has a suitable bandgap of 2.1 eV, but it suffers from low charge carrier mobility and a short hole diffusion length.^{7,8} WO₃ is soluble in water at pH greater than 5 and can only absorb the blue-violet part of visible light spectrum because of its large bandgap of 2.7 eV.9,10

These deficiencies of binary metal oxides drive attention to ternary oxides since the properties of binary oxides could be modulated by the addition of a new element. To circumvent the drawbacks of WO₃, triclinic copper tungstate (CuWO₄) has attracted much attention.^{11–20} CuWO₄ has a direct bandgap of ~2.4 eV. The narrowed bandgap, as compared to WO₃, was explained by the raised valence band maximum due to the hybridization of Cu(3d) and O(2p) orbitals.^{15,21} CuWO₄ also has improved stability in neutral electrolyte compared to WO₃.²² This advantage can also be traced to the strong Cu-O bond, which limits the formation of soluble tungstate. However, the introduction of localized Cu(3d) orbitals also lead to poor charge transport properties.²¹ Therefore, enhancing the mobility of charge carriers in

^zE-mail: mullins@che.utexas.edu; xp2031@163.com

CuWO₄ is a crucial step to improve its PEC performance. A number of strategies have been tried to address this limitation. Most recently, Zhang et al. reported that the photocurrent density of CuWO₄ is significantly increased by the incorporation of Ag nanowires into the semiconductor matrix, which enhances the conductivity of CuWO₄.²³ Bohra et al. found that the charge separation efficiency of CuWO₄ can be increased by doping Fe, which results in an improved solar-to-hydrogen conversion efficiency.²⁴

Hydrogen-treatment can reduce metal oxide semiconductor materials by introducing oxygen vacancies and hydrogen impurities and thus is a simple method to increase the donor density and electrical conductivity. In recent years, several common photoanodes, TiO_2 ,^{25–30} α -Fe₂O₃,^{31,32} WO₃,³³ and BiVO₄,^{34,35} have been treated using this method and resulted in photocurrent density enhancement. By analogy, in this work, the annealed electrodeposited CuWO₄ films were further thermally treated under an atmosphere of 5% hydrogen in argon. We observed an enhancement of light absorbance in the visible light range and an increase in photocurrent density after hydrogentreatment. By combining experimental and theoretical methods, we discovered that the mid-gap states generated by O vacancies are responsible for the stronger absorption of visible light. However, the enhanced absorbed visible light is not utilized for water oxidation as shown by IPCE measurements. The increased photocurrent density can therefore be explained by the enhanced charge carrier density as evidenced by Mott-Schottky measurements.

Results and Discussion

Material characterization.—Figure 1 shows the morphologies of the annealed CuWO₄ film and hydrogen-treated CuWO₄ film prepared at 250°C (this sample shows the highest photocurrent density). For simplicity, we use H₂:CuWO₄ to denote the hydrogen-treated CuWO₄ sample with optimal performance in the following discussions. The SEM images reveal that the electrodeposited CuWO₄ films are porous and could be described as interconnected nanoparticles. The particle size distributions based on SEM images are measured using ImageJ software³⁶ and there is no obvious difference in the average particle sizes before and after hydrogen-treatment (~200 ± 10 nm). The thickness of the CuWO₄ film is about 2.5 µm observed from the cross sectional SEM image (shown in Figure S3). The stoichiometry of the

^{*}Electrochemical Society Member.

Figure 1. Top view of SEM images for the (a) $CuWO_4$ and (b) $H_2{:}CuWO_4$ films.

film was checked with eight individually synthesized samples. The value of Cu/W ratio is close to the formal composition of 1.0 for $CuWO_4$ (shown in Figure S4).

The synthesized thin film was further characterized by XRD to determine the phase of the materials and the effect of hydrogentreatment on the material's crystallinity. As shown in Figure 2a, XRD patterns of annealed CuWO₄ films can only be indexed to triclinic CuWO₄ (PDF # 01-088-0269). After hydrogen-treatment at various temperatures, the XRD spectrum of the CuWO₄ thin film remains unchanged, indicating that hydrogen-treatment did not change the degree of crystallinity and the phase of the material. When the XRD patterns are examined more closely for 20 values at 17-21°, 22-25°, and 30.5–33°, as respectively shown in Figures 2b, 2c, and 2d, noticeable shifts of diffraction peaks after hydrogen-treatment are observed. The center position of the (100) peak shifts from 18.98° (the center of the (100) peak for $CuWO_4$) to 19.03° (the center of the (100) peak for CuWO_{4-x} (PDF # 00–021–0307)). The (010), (011), and (020) peaks centered at 23.54°, 23.58°, and 30.82° for CuWO₄ also shift to 24.10°, 24.16°, and 30.86°, respectively. All these shifts

are consistent with the formation of $CuWO_{4-x}$. Hence, it is suggested that oxygen vacancies have been introduced into the lattice of $CuWO_4$ by hydrogen-treatment.

X-ray photoelectron spectroscopy (XPS) measurements were conducted to characterize the chemical states of $CuWO_4$ and $H_2:CuWO_4$ films. The position of adventitious carbon C 1s peak is assigned to 284.8 eV to calibrate the binding energy scale.

Figure 3a shows that the $Cu(2p_{1/2})$ and $Cu(2p_{3/2})$ peaks of $CuWO_4$ are located at binding energies of 954.51 and 934.52 eV, respectively, which are in good agreement with the reported values for CuWO₄. For H₂:CuWO₄, both Cu(2p_{1/2}) and Cu(2p_{3/2}) lines shift slightly to the low binding energies by 0.34 and 0.31 eV to 954.17 and 934.21 eV, respectively. According to the literature,^{37,38} these shifts are due to the partial reduction of Cu²⁺ species. The core-level W 4f XPS spectra of the CuWO₄ and H₂:CuWO₄ films are shown in Figure 3b. The shift of binding energies to the low binding energy for $W(4f_{5/2})$ and W(4f7/2) peaks is 0.28 and 0.27 eV upon hydrogen-treatment, respectively. This result suggests the existence of W5+ species, which have been demonstrated to have lower binding energies of $4f_{5/2}$ and $4f_{7/2}$ electrons than those of the W⁶⁺.³³ As shown in Figure S5, O 1s XPS spectra of CuWO₄ consist of two peaks centered at 530.10 and 531.01 eV. The peak at 530.10 eV is consistent with the typical binding energy of the O(1s) line of CuWO₄, while the peak at 531.01 eV can be assigned to surface hydroxide.¹⁵ The second peak shifts from 531.01 eV to 531.32 eV. A similar behavior has been observed for hydrogen treated BiVO₄.³⁵ XPS analysis shows that the metal components of CuWO₄ are partially reduced after hydrogen-treatment due to oxygen vacancies, which is in agreement with the result from XRD.

Optical and electrical properties.—As shown in Figure S2, the incorporation of oxygen vacancies into the CuWO₄ thin film leads to dramatic color change of the samples. The sample color becomes visibly darker after hydrogen-treatment. This apparent darkening becomes more obvious for samples annealed at higher temperatures. The

Figure 2. (a) XRD patterns of the CuWO₄ and hydrogen-treated CuWO₄ films (treated at various temperatures). The black and red vertical lines correspond to CuWO₄ (PDF# 01-088-0269) and CuWO_{4-x} (PDF# 00-021-0307), respectively. The * symbols indicate the peaks for SnO₂ (PDF# 00-046-1088). (b), (c), and (d) enlarged portion of XRD patterns for 2θ values $17-21^\circ$, $22-25^\circ$, and $30.5-33^\circ$, respectively.

Downloaded on 2016-09-12 to IP 146.6.143.211 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).

Figure 3. XPS spectra of the (a) Cu 2p and (b) W 4f peaks for the CuWO₄ and H₂:CuWO₄ films. The S symbols in (a) indicate the satellite peaks.

color change indicates the change of the optical properties of CuWO₄. The influence of the hydrogen-treatment on the optical properties of CuWO₄ was probed by UV-vis absorbance. The light absorption of H₂:CuWO₄ almost increases over the entire tested wave length region except from 350 to 375 nm (Figure 4). An increased UV-vis absorption has been previously observed in other hydrogen-treated metal oxides, notably TiO₂.^{8,25} The authors have ascribed this increase to the introduction of oxygen vacancies and the increased hydroxyl groups that act as visible light-active defect sites. The net result is a broad increase in absorption of visible light to and from the mid-bandgap energy states of these defect sites, which results in the change from white to black TiO₂ coloration. The hydrogen treatment of our CuWO₄ films creates similar vacancies which likewise act to increase film absorption. In addition to the optical properties, electrical properties are also shifted after hydrogen-treatment.

Figure 5 presents the Mott-Schottky plots measured in 0.1 M KBi buffer at the frequency of 5 kHz. Linear regression of the $1/C^2$ vs V relationship gives an estimated flatband potential of ~0.48 V and ~0.52 V vs RHE for CuWO₄ and H₂:CuWO₄, respectively. The positive slopes of the regression lines indicate the n-type semiconductor properties of CuWO₄ and H₂:CuWO₄. According to the literature,³⁹ the charge carrier densities of these films at 5 kHz frequency can be calculated (a dielectric constant of 83 for CuWO₄ is used¹¹). The charge carrier density of the pristine CuWO₄ film is calculated to be 3.08×10^{18} cm⁻³, while the calculated charge carrier density of the H₂:CuWO₄ film is 7.42×10^{18} cm⁻³ - more than twice that found for the untreated CuWO₄ film.

Electronic structure by first-principles calculations.—The density of states (DOS) plot of CuWO₄ from a DFT-HSE06 calculation is shown in Figure 6a. The bandgap is calculated to be 2.4 eV, which is in agreement with experiments.^{14,15,17} The valence band bottom

mainly consists of W(5d) states, while the Cu(3d) states contribute primarily to the middle part of the valence band. O(2p) states contribute substantially to the whole valence band region and especially to the top of the valence band. The conduction band can be clearly divided into two sub-bands. Cu-O hybridized states are the principal contributor to the sub-band at lower energy from 2.4 eV to 3.8 eV above the valence band. The upper conduction band mainly originates from the W-O interaction above 3.8 eV. The absorption spectrum (the imaginary part of the dielectric function) is shown in Figure 6c. The first peak is a resonant excitonic peak located at 2.1 eV. It corresponds to the optical bandgap of 2.2 eV and matches very well with the yellowish color of CuWO₄. There are two other small peaks located at 3.2 eV and 3.6 eV, respectively. The third peak at 3.6 eV corresponds to the direct quasiparticle bandgap obtained with the G0W0 method. The energy difference between the first and third peak gives an exciton binding energy of 1.5 eV. The major peak centered at 4.5 eV originates from the excitation from the valence band top to the higher part of the conduction band consisting of mainly W(5d) and O(2p) states.

Upon the generation of oxygen vacancies, Cu and W atoms are reduced. The Bader charges of Cu atoms shift from 9.66e to 10.06e, while the Bader charges of W change from 10.84e to 11.03e. The magnetic moments of Cu atoms also reduce to zero. The DOS changes dramatically as shown in Figure 6b. It can be seen that occupied mid-gap states corresponding to the Cu(3d) states are introduced into the DOS lying approximately 0.8 eV below the W(3d)-O(2p) conduction band. As a result, O vacancies can induce shallow donors into the CuWO₄ band structures. This is in agreement with the result obtained from Mott-Schottky plots, in which it is shown that the

Figure 4. UV-vis absorbance of the CuWO₄ and H₂:CuWO₄ films.

Figure 5. Mott-Schottky plots of the CuWO₄ and H₂:CuWO₄ films obtained in 0.1 M KBi buffer solution (pH 7.0) at the frequency of 5 kHz.

Downloaded on 2016-09-12 to IP 146.6.143.211 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).

Figure 6. Computed total and partial density of states of (a) CuWO₄ and (b) CuWO₄ with O vacancies. Computed absorption spectra (imaginary part of dielectric function) of (c) CuWO₄ and (d) CuWO₄ with O vacancies.

charge carrier density of the CuWO₄ film is increased by hydrogentreatment. Consistent with the electronic structure, the absorption spectrum of CuWO₄ with O vacancies (shown in Figure 6d) exhibits much higher absorption in the low energy regime than untreated CuWO₄. This computational result is also consistent with observations from UV-vis absorption spectra. Light absorption in the long wavelength region can be attributed to the transitions from the valence band of CuWO₄ to the oxygen vacancy level or from the oxygen vacancy level to the conduction band of CuWO₄.^{26,28}

PEC measurements.—The PEC properties of the pristine CuWO₄ and hydrogen-treated CuWO₄ films were measured with linear sweep voltammetry (LSV) experiments. In these measurements, we used a 0.1 M KBi buffer solution of pH = 7.0 as the electrolyte because

CuWO₄ shows high O₂ evolution faradaic efficiency (~97%) and only slight degradation in this solution.²² Results of these measurements are shown in Figure 7a. It can be seen that CuWO₄ films exhibit higher photocurrent density after hydrogen-treatment. Particularly, the CuWO₄ film treated at 250°C showed the highest photocurrent density at 1.23 V vs. RHE, which is about 50% higher in efficiency compared with the non-treated film.

From the discussions of the last section, the incorporated O vacancies can introduce shallow donors into the bandgap, which result in an increase in charge carrier density and enhanced visible light absorption. The improved activity observed in the PEC experiments should be related to the two effects induced by O vacancies. In one way, the increased charge density could result in the enhancement of the strength of electric field in the depletion layer, which then leads

Figure 7. (a) LSV of the CuWO₄ and hydrogen-treated CuWO₄ films (treated at various temperatures for 20 min) from the front-side illumination in 0.1 M KBi buffer solution (pH 7.0) under AM1.5G simulated solar light (100 mW/cm²). (b) LSV of the CuWO₄ and H₂:CuWO₄ films from the front-side and back-side illumination in 0.1 M KBi buffer solution (pH 7.0) under AM1.5G simulated solar light (100 mW/cm²). The scan rate was 25 mV/s.

Figure 8. IPCE vs wavelength taken at 1.23 V vs RHE for the CuWO₄ and H₂:CuWO₄ films under front-side illumination.

to faster electron-hole pair separation. In the other way, the increased numbers of electron-hole pairs generated by the absorption of visible light could directly participate into the reaction.

To examine the idea of enhanced electron-hole pair separation kinetics, we examined the influence of illumination direction on PEC activity. During the PEC measurements, two illumination directions - front-side and back-side - are included. The front-side is the interface of CuWO₄ thin film and electrolyte, while the back-side is at the interface of CuWO4 thin film and the FTO electrode. For electronhole pairs generated at the front-side, photoelectrons need to travel across the whole thickness of thin film to get to the FTO electrode. On the other hand, a photo-electron generated at the back-side is in the vicinity of the FTO electrode. As shown in Figure 7b, the photocurrent of the non-treated CuWO4 film from back-side illumination $(\sim 0.21 \text{ mA/cm}^2)$ is higher than that of front-side illumination $(\sim 0.16 \text{ mA/cm}^2)$ mA/cm²) at 1.23 V vs RHE. The reason for the difference relates to the diffusion length the excited electron needs to travel to the FTO and hole collection depends only on the size of the nanoparticle due to the porous morphology. However, the trend reverses after hydrogen-treatment. The photocurrent of H2:CuWO4 with front-side illumination ($\sim 0.26 \text{ mA/cm}^2$) is higher than that of back-side illumination ($\sim 0.20 \text{ mA/cm}^2$), which indicates that the electron diffusion is greatly enhanced so that it is no longer limits the photocurrent. An increase in the electron diffusion length in hydrogen-treated CuWO₄ does not have an obvious effect on the photocurrents under back-side illumination. This is because for the back-side illuminated samples the electron diffusion length in pristine CuWO₄ is already appropriate for the transfer of photogenerated electrons to the FTO substrate. Therefore the photocurrents under back-side illumination for CuWO₄ and H₂:CuWO₄ are quite similar.

To test the second hypothesis for activity enhancement, the IPCE measurements were performed to investigate the relation between the wavelength of the incident light and the PEC activity. Figure 8 shows the IPCE spectra for CuWO₄ and H₂:CuWO₄ films at 1.23 V vs RHE. For both CuWO₄ and H₂:CuWO₄, a photoresponse is observed from 350 to 525 nm. However, the IPCE of H₂:CuWO₄ does not increase for wavelengths larger than 525 nm, just as with untreated CuWO₄. These results imply that light absorbed at wavelengths of greater than 525 nm is not successfully used to carry out water oxidation. Similar phenomenon has also been observed for hydrogen-treated TiO₂.^{26,28} These authors attributed this to the inefficient collection of charge carriers generated with long wavelength light excitation because of their overall short lifetime.

A stability test for 3600 s was made to measure the photostability of CuWO₄ and H₂:CuWO₄ photoanodes. The photoelectrochemical stability of the CuWO₄ and H₂:CuWO₄ films from front-side illumination under a constant bias of 1.23 V vs RHE is shown in Figure S6. For CuWO₄, the photocurrent approaches a stable anodic current of ~0.17 mA/cm² after a slight decrease during the first few minutes and decreases $\sim 2\%$ of photocurrent over 3600 s showing an excellent stability in 0.1 M KBi buffer (pH 7.0). For H₂:CuWO₄, a decrease of $\sim 9\%$ in the photocurrent is observed after 3600 s test. This indicates that the hydrogen-treated CuWO₄ films have an acceptable photostability although they are not as stable as the untreated CuWO₄ films.

Conclusions

In summary, it has been shown that hydrogen-treatment of CuWO₄ leads to an enhanced PEC activity in water oxidation. The XRD and XPS analysis of pristine and hydrogen-treated CuWO₄ show that the improved activity due to hydrogen-treatment is due to the formation of oxygen vacancies. In addition, the formation of oxygen vacancies results in a higher carrier concentration and an increase in visible light absorption. Insights from first-principles calculations relate these modifications of properties to the formation of mid-gap states localized in Cu(3d) orbitals upon oxygen vacancy formation. Furthermore, IPCE measurements rule out the possibility of successful conversion of the long wavelength light absorbed after hydrogentreatment. Therefore, we propose the enhanced activity is due to the enhanced electron-hole pair separation kinetics, a result of higher charge carrier concentration. This study sheds light on the effect of hydrogen-treatment on the structural, optical, and electronic properties of CuWO₄ and the resulting improvements in PEC activity of this material.

Acknowledgments

We gratefully acknowledge the U. S. Department of Energy (DOE) grant DE-FG02-09ER16119 and the Welch Foundation (grant F-1436). Wenlong Guo thanks Bryan R. Wygant for helpful discussions as well as the China Scholarship Council and the Chongqing University Postgraduates' Innovation Project for financial support.

References

- L. Hammarstrom and S. Hammes-Schiffer, "Artificial Photosynthesis and Solar Fuels." *Accounts Chem. Res.*, 42, 1859 (2009).
- A. Kudo and Y. Miseki, "Heterogeneous Photocatalyst Materials for Water Splitting." Chem. Soc. Rev., 38, 253 (2009).
- F. E. Osterloh, "Inorganic Nanostructures for Photoelectrochemical and Photocatalytic Water Splitting." *Chem. Soc. Rev.*, 42, 2294 (2013).
- A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode." *Nature*, 238, 37 (1972).
- A. J. Bard and M. A. Fox, "Artificial Photosynthesis Solar Splitting of Water to Hydrogen and Oxygen." Accounts Chem. Res., 28, 141 (1995).
- S.-R. Woo and Y.-M. Sung, "Enhanced Photoelectrochemical Water Splitting of Micro-Arc Oxidized TiO₂ via Anatase/Rutile Phase Control and Nitrogen Doping." *J. Electrochem. Soc.*, 163, H278 (2016).
- K. Sivula, F. Le Formal, and M. Graetzel, "Solar Water Splitting: Progress Using Hematite (alpha-Fe₂O₃) Photoelectrodes." *Chemsuschem*, 4, 432 (2011).
- G. Wang, Y. Ling, D. A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang, and Y. Li, "Facile Synthesis of Highly Photoactive alpha-Fe₂O₃-Based Films for Water Oxidation." *Nano Lett.*, **11**, 3503 (2011).
- F. M. Pesci, A. J. Cowan, B. D. Alexander, J. R. Durrant, and D. R. Klug, "Charge Carrier Dynamics on Mesoporous WO₃ During Water Splitting." *J. Phys. Chem. Lett.*, 2, 1900 (2011).
- J. Augustynski, R. Solarska, H. Hagemann, and C. Santato, "In Nanostructured Thin-Film Tungsten Trioxide Photoanodes for Solar Water and Sea-Water Splitting, Conference on Solar Hydrogen and Nanotechnology, San Diego, CA, 2006 Aug 14–17; pp U140.
- S. K. Arora, T. Mathew, and N. M. Batra, "Electrochemical Characteristics of Copper Tungstate Single-Crystals." J. Phys. D Appl. Phys., 23, 460 (1990).
- G. Hitoki, T. Takata, S. Ikeda, M. Hara, J. N. Kondo, M. Kakihana, and K. Domen, "Mechano-Catalytic Overall Water Splitting on Some Mixed Oxides." *Catal. Today*, 63, 175 (2000).
- S. K. Arora, T. Mathew, B. Chudasama, and A. Kothari, "Single Crystal Growth and Photoelectrochemical Study of Copper Tungstate." J. Cryst. Growth, 275, E651 (2005).
- R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martinez-Garcia, and A. Segura, "Optical Absorption of Divalent Metal Tungstates: Correlation between the Band-Gap Energy and the Cation Ionic Radius." *Europhys. Lett.*, 83 (2008).
- J. E. Yourey and B. M. Bartlett, "Electrochemical Deposition and Photoelectrochemistry of CuWO₄, a Promising Photoanode for Water Oxidation." *J. Mater. Chem.*, 21, 7651 (2011).

- Y. Chang, A. Braun, A. Deangelis, J. Kaneshiro, and N. Gaillard, "Effect of Thermal Treatment on the Crystallographic, Surface Energetics, and Photoelectrochemical Properties of Reactively Cosputtered Copper Tungstate for Water Splitting." *J. Phys.*
- *Chem. C*, **115**, 25490 (2011).
 17. J. C. Hill and K.-S. Choi, "Synthesis and Characterization of High Surface Area CuWO₄ and Bi₂WO₆ Electrodes for Use as Photoanodes for Solar Water Oxidation."
- Mater. Chem. A, 1, 5006 (2013).
 S. K. Pilli, T. G. Deutsch, T. E. Furtak, L. D. Brown, J. A. Turner, and A. M. Herring, "BiVO₄/CuWO₄ Heterojunction Photoanodes for Efficient Solar Driven Water Oxidation." *Phys. Chem. Chem. Phys.*, 15, 3273 (2013).
- N. Gaillard, Y. Chang, A. DeAngelis, S. Higgins, and A. Braun, "A Nanocomposite Photoelectrode Made of 2.2 eV Band Gap Copper Tungstate (CuWQ₄ and Multi-Wall Carbon Nanotubes for Solar-Assisted Water Splitting." *Int. J. Hydrogen Energy*, 38, 3166 (2013).
- H. H. Chen, W. H. Leng, and Y. M. Xu, "Enhanced Visible-Light Photoactivity of CuWO₄ through a Surface-Deposited CuO." J. Phys. Chem. C, 118, 9982 (2014).
- K. J. Pyper, J. E. Yourey, and B. M. Bartlett, "Reactivity of CuWO₄ in Photoelectrochemical Water Oxidation Is Dictated by a Midgap Electronic State." *J. Phys. Chem. C*, **117**, 24726 (2013).
- J. E. Yourey, K. J. Pyper, J. B. Kurtz, and B. M. Bartlett, "Chemical Stability of CuWO₄ for Photoelectrochemical Water Oxidation." *J. Phys. Chem. C*, **117**, 8708 (2013).
- H. Zhang, P. Yilmaz, J. O. Ansari, F. F. Khan, R. Binions, S. Krause, and S. Dunn, "Incorporation of Ag Nanowires in CuWO₄ for Improved Visible Light-Induced Photoanode Performance." *J. Mater. Chem. A*, **3**, 9638 (2015).
- D. Bohra and W. A. Smith, "Improved Charge Separation via Fe-Doping of Copper Tungstate Photoanodes." *Phys. Chem. Chem. Phys.*, **17**, 9857 (2015).
- X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, "Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals." *Science*, 331, 746 (2011).
- G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, "Hydrogen-Treated TiO₂ Nanowire Arrays for Photoelectrochemical Water Splitting." *Nano Lett.*, **11**, 3026 (2011).
- F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, "Efficient Suppression of Electron Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO₂ Nanowires for Photoelectrochemical Water Splitting." *J. Phys. Chem. C*, **117**, 25837 (2013).

- 28. D. A. Wheeler, Y. C. Ling, R. J. Dillon, R. C. Fitzmorris, C. G. Dudzik, L. Zavodivker, T. Rajh, N. M. Dimitrijevic, G. Millhauser, C. Bardeen, Y. Li, and J. Z. Zhang, "Probing the Nature of Bandgap States in Hydrogen-Treated TiO₂ Nanowires." J. Phys. Chem. C, 117, 26821 (2013).
- H. S. Kim and S. H. Kang, "Effect of Hydrogen Treatment on Anatase TiO₂ Nanotube Arrays for Photoelectrochemical Water Splitting." *B. Kor. Chem. Soc.*, 34, 2067 (2013).
- S. Hoang, S. P. Berglund, N. T. Hahn, A. J. Bard, and C. B. Mullins, "Enhancing Visible Light Photo-oxidation of Water with TiO₂ Nanowire Arrays via Cotreatment with H₂ and NH₃: Synergistic Effects between Ti³⁺ and N." *J. Am. Chem. Soc.*, **134**, 3659 (2012).
- M. Li, J. Deng, A. Pu, P. Zhang, H. Zhang, J. Gao, Y. Hao, J. Zhong, and X. Sun, "Hydrogen-Treated Hematite Nanostructures with Low Onset Potential for Highly Efficient Solar Water Oxidation." *J. Mater. Chem. A*, 2, 6727 (2014).
- J. Moir, N. Soheilnia, K. Liao, P. O'Brien, Y. Tian, K. S. Burch, and G. A. Ozin, "Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H₂ Treatment." *Chemsuschem*, 8, 1557 (2015).
- G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, and Y. Li, "Hydrogen-Treated WO₃ Nanoflakes Show Enhanced Photostability." *Energ. Environ. Sci.*, 5, 6180 (2012).
- G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong, J. Z. Zhang, V. Lordi, C. R. Leao, and Y. Li, "Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate." J. Phys. Chem. C, 117, 10957 (2013).
- A. P. Singh, N. Kodan, A. Dey, S. Krishnamurthy, and B. R. Mehta, "Improvement in the Structural, Optical, Electronic and Photoelectrochemical Properties of Hydrogen Treated Bismuth Vanadate Thin Films." *Int. J. Hydrogen Energy*, **40**, 4311 (2015).
- M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, "Image Processing with ImageJ." Biophotonics Intern., 11, 36 (2004).
- C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, and J. R. Jr. Rumble, *NIST Standard Reference Database 20*, Version 3.4 (web version) (http:/srdata.nist.gov/xps/) 2003.
- M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, "Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn." *Appl. Surf. Sci.*, 257, 887 (2010).
- S. K. Arora and T. Mathew, "Dielectric Studies of CuWO₄ Crystals." *Phys. Status Solidi A*, **116**, 405 (1989).