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A genetic algorithm is used with density functional theory to investigate the catalytic properties of
38- and 79-atom bimetallic core-shell nanoparticles for the oxygen reduction reaction. Each particle
is represented by a two-gene chromosome that identifies its core and shell metals. The fitness of
each particle is specified by how close the d-band level of the shell is to that of the Pt�111� surface,
a catalyst known to be effective for oxygen reduction. The genetic algorithm starts by creating an
initial population of random core-shell particles. The fittest particles are then bred and mutated to
replace the least-fit particles in the population and form successive generations. The genetic
algorithm iteratively refines the population of candidate catalysts more efficiently than Monte Carlo
or random sampling, and we demonstrate how the average energy of the surface d-band can be tuned
to that of Pt�111� by varying the core and shell metals. The binding of oxygen is a more direct
measure of catalytic activity and is used to further investigate the fittest particles found by the
genetic algorithm. The oxygen binding energy is found to vary linearly with the d-band level for
particles with the same shell metal, but there is considerable variation in the trend across different
shells. Several particles with oxygen binding energies similar to Pt�111� have already been
investigated experimentally and found to be active for oxygen reduction. In this work, many other
candidates are identified. © 2009 American Institute of Physics. �doi:10.1063/1.3272274�

I. INTRODUCTION

Platinum-based fuel cells offer an attractive alternative
to internal combustion engines as a future means of utilizing
chemical energy. There are, however, shortcomings of such
technologies that must be resolved if they are to become
practical and widespread. Some of these difficulties include
CO poisoning, the short lifetime of electrodes in acidic
environments, the �30% energy loss due to slow oxygen
reduction kinetics, and the high material cost and limited
supply of platinum itself. Cheaper, more effective electro-
catalysts need to be developed, yet the task of discovering
novel platinum alternatives has proven to be extremely
challenging.

Nanoparticles have drawn considerable attention as po-
tential catalysts. One reason is that nanoparticles have high
surface-area-to-volume ratios, which could help reduce fuel
cell cost since less catalytic material is required. Another
reason is that nanoparticles can exhibit strikingly different
reactivity than their bulk counterparts. Haruta et al.,1,2 for
example, have shown that supported Au particles are very
active for low-temperature CO oxidation in the 2–5 nm size
range. Bimetallic nanoparticles, moreover, offer the addi-
tional prospect of having their reactivity tuned as near-
surface alloys.3,4 Core-shell nanoparticles are excellent can-
didates because they have well-defined geometries when
synthesized in controlled environments, for example, using
dendrimer encapsulation techniques.5,6

In this work, we identify potential core-shell nanopar-
ticle catalysts for the oxygen reduction reaction �ORR� using

a genetic algorithm �GA� to search through the space of pos-
sible metal combinations. GAs have been used to solve com-
plex problems in a wide variety of disciplines, including
business,7 bioinformatics,8–10 chemistry,11–13 data analysis,14

economics and finance,15–18 materials design,19 and
medicine.20,21 They attempt to optimize an objective �fitness�
function using biologically inspired analogs of selection,
breeding, and mutation to iteratively refine a population of
solution candidates. GAs are especially useful for systems
involving discrete variables. In our case, the discreteness in
the fitness landscape arises from the elemental identity of the
core and shell metals; these are not continuous variables that
can be optimized using gradient-based techniques. Our mea-
sure of a fit nanoparticle catalyst is that the center of the
surface d-band is close to that of an effective catalyst,
Pt�111�. Studies have shown that the d-band is a good reac-
tivity descriptor that can be used to predict trends in catalysts
with similar geometries and reaction mechanisms.4,22–24

In order for GAs to be effective over random or trial-
and-error sampling, there must be some structure to the fit-
ness landscape. Two specific requirements are that �i� small
mutations of a fit individual will tend to produce other fit
individuals, and �ii� the properties that make two individuals
fit can be encoded into their genetic information so that
cross-breeding them will tend to produce other fit individu-
als. When these assumptions hold, the GA need only search
through a small subset of the entire solution space to find the
fittest individuals. We anticipate that the space of bimetallic
core-shell nanoparticles is structured so that desirable par-
ticle properties can be optimized by a GA, i.e., that varyinga�Electronic mail: henkelman@mail.utexas.edu.
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the core of a particle with a good fitness value will tend to
produce other fit particles and that the offspring of two fit
particles will also tend to be fit.

II. CALCULATION DETAILS

Density functional theory �DFT� was used in a GA
schema to optimize the identity of core and shell metals in
38- and 79-atom nanoparticle catalysts for the ORR. The
particles were assumed to have face-centered cubic �fcc�
crystal structures with the truncated-octahedral shapes shown
in Fig. 1. The 38-atom particles contain a 6-atom core sur-
rounded by a 32-atom monolayer shell, and the 79-atom par-
ticles contain a 19-atom core surrounded by a 60-atom
monolayer shell. The cores and shells of the particles were
taken to be d-block metals �viz., the chemical elements in
groups 3–12 and periods 4–6 of the periodic table�.

A flow chart of the GA used in this work is shown in Fig.
2. In the first step �a� an initial population of 30 core-shell
nanoparticles was randomly generated using metals from the
d-block. Each metal was used once as a core and once as a
shell to ensure that a large region of solution space was ini-
tially sampled. The particles were given ideal fcc truncated-
octahedral crystallite structures �Fig. 1� with the lattice con-
stant chosen as a weighted average of the core and shell bulk
fcc lattice constants.25

In the second step �b� DFT was used to optimize the
structure of each particle in the generation and to calculate
the electronic density of states. All DFT calculations were
performed with the Vienna ab initio simulation package.26,27

Geometry optimizations were initialized by randomly
displacing each atom in the particle by a small amount
��0.5 Å� to break symmetry. The total energy was then
minimized until the force on each atom was less than 0.01
eV/Å. Cubic cells of side lengths 16 and 20 Å contained the
38- and 79-atom nanoparticles, respectively. These cell sizes
were chosen so that 8 Å vacuum gap separated the periodic
images on average. Electrons in the atomic cores were de-
scribed using pseudopotentials of the projector augmented-
wave framework,28,29 while valence electrons were described
with Kohn-Sham single-electron wave functions30 expanded
in a plane wave basis set up to a kinetic energy cutoff of 300
eV. The exchange-correlation potential was modeled with the

generalized gradient approximation using the Perdew–Wang
91 functional.31 The Brillouin zone was sampled at the
�-point. Spin polarization was incorporated into all calcula-
tions. To accelerate electronic minimization, the occupation
of states near the Fermi level was smeared by a width of
0.2 eV using the approach of Methfessel and Paxton.32 Con-
vergence was checked by increasing the plane wave energy
cutoff to 400 eV and increasing the cell volume by 33%; the
binding energy of oxygen on Ni79 changed by only 11 meV,
or less than 0.4%, using these parameters. The symmetry of
the particles was monitored during structural optimization.
Any particle that did not retain a truncated-octrahedral core-
shell geometry was removed from the simulation.

In the third step of the GA �Fig. 2�c�� the fitness of each
particle was calculated using the fitness function

� � ��d
shell − �d

Pt�111�� , �1�

where �d
shell and �d

Pt�111� are the average energies of the d-band
states in the shell of the particle and at the surface of Pt�111�,
respectively, each with reference to the Fermi energy.33 This
fitness function aims to quantify the activity of the catalytic
surface of the nanoparticle with reference to Pt�111�, an ef-
fective catalyst for the ORR. Once � was computed for all
nanoparticles in the generation, the particles were ranked in
ascending order of �. The particle with the smallest value of
� received the best rank �r=1�, while the particle with the
largest value of � received the worst rank �r=30, assuming
that no nanoparticles were discarded from the generation due
to loss of symmetry�.

In the fourth step �d� the nanoparticles were bred to pro-
duce the next generation. Parent nanoparticles were selected
pairwise from the ranked generation according to the prob-
ability

(a)

Mo

Pd Pt

Cu

(b)

Cu19@Pt60Mo6@Pd32
FIG. 1. Examples of the core-shell nanoparticles investigated in this work:
�a� a 38-atom particle with a 6-atom molybdenum core and a 32-atom pal-
ladium shell, denoted Mo6@Pd32, and �b� a 79-atom Cu19@Pt60 particle. To
the right of each nanoparticle is its two-gene chromosome.
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Evaluate the electronic structure of each particle.(b)

Breed the nanoparticles according to the probability

where r is the rank number. Alternatively, mutate a
parent particle with 10% probability.
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(c) Rank each nanoparticle using the fitness function,

where and are the d-band centers of the
surface of the particle and Pt(111), respectively.
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Finishwhen the average fitness of the particles stops
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FIG. 2. Overview of the GA �see text for details�. The steps in red were
repeated to refine the population of candidate nanoparticle catalysts until the
stop criterion was met.
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Pbreed�r� =
e−�r

�r�=1
R e−�r�

, �2�

where �=ln 10 / �R−1� was chosen so that the breeding prob-
ability decreased by one decade over the size of the genera-
tion, R. The best-ranked particle was therefore 10 times more
likely to breed than the worst-ranked particle, yet all par-
ticles were allowed to contribute to the next generation. Tests
using different values of �, chosen such that the breeding
probability fell off by factors of 5 and 20, and using a step
breeding probability function centered about R /2 �trunca-
tion� changed the number of fit particles found by the GA by
less than 4%. This indicates that the performance of the GA
is insensitive to the details of the breeding probability.

An example of the nanoparticle breeding process is
shown in Fig. 3. A two-gene chromosome was used to iden-
tify the core and shell metals of each parent. The chromo-
somes of the parents were crossed to produce a single off-
spring nanoparticle for the next generation, chosen at random
from the set of possible offspring. The breeding process was
repeated until the next generation of 30 nanoparticles was
formed. The 79-atom nanoparticles were bred in an identical
manner.

Alternatively, parent nanoparticles had a chance to mu-
tate. Mutations introduced randomness into the simulation
and prevented the GA from becoming trapped in a local re-
gion of solution space. The mutations used in the GA are
shown in Fig. 4. In a single-point mutation, either the core or
the shell was mutated �with equal probability� to a random
transition metal. In a double-point mutation both the core
and the shell were mutated, corresponding to the formation
of a new, random particle. In an inversion mutation, the core
and shell metals were interchanged. The overall probability
of a mutation occurring for a parent was 10%; the probability
of a particular mutation was 3.3%.

Steps �b�–�d� in the GA were repeated to search for op-
timal core-shell nanoparticle catalysts. Each generation was
evaluated with DFT, ranked, and bred to form the next gen-
eration; this generation in turn was evaluated with DFT,
ranked and bred to form the next generation, and so on. In
this way, the genes of fit particles propagated throughout the
generations, and successive generations continually evolved
toward optimal fitness. The GA was terminated once the av-
erage fitness of the generation dropped below 0.25 eV. Thus,
the final generation had catalytic surfaces whose d-band cen-
ters were within 0.25 eV of Pt�111�.

III. RESULTS AND DISCUSSION

A. 38-atom nanoparticles

Our first GA simulation optimized 38-atom core-shell
particles for the ORR. Such particles may be too small to be
stable as real catalysts, but they are well suited for testing our
methodology. The convergence of the GA is shown in Fig. 5.
The GA iteratively refined the population of candidate cata-
lysts until the stop criterion �avg�0.25 eV was reached.

Promising core-shell metal combinations found by the
GA are shown in Fig. 6. Horizontal trends are prominent,
indicating that the shell metal largely determines the elec-
tronic structure at the surface. Good shell metals include Cu,
Mo, Os, Pd, Pt, and Ru. The presence of vertical trends in

Parent

Ni6@Pt32

Possible offspring
Ni6@Pd32Co6@Pt32

Co6@Pd32 Ni6@Pt32

Pt

Ni

Parent

Co6@Pd32

Pd

Co

???

FIG. 3. Two parent particles are bred to produce an offspring particle. Each
breeding event led to the formation of a single offspring, chosen at random
from the set of possible offspring �in this case, 	Co,Ni
6@ 	Pd,Pt
32�.

Ir6@Au32 Au6@Ir32

(c)

Double-point
mutation

Ir6@Au32 Pd6@Cu32

(b)
Ir6@Au32

(a)

Ir6@Pt32

Single-point
mutation

Inversion
mutation

FIG. 4. Mutations used in the GA were �a� single-point, �b� double-point,
and �c� inversion. For single-point mutations, either the core or the shell was
mutated with equal probability. A mutation occurred with a probability of
10% during each breeding event.
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FIG. 5. Convergence of the GA for 38-atom particles. The average fitness of
the generation decreased until the stop criterion was met.
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Fig. 6 indicates that the core is capable of influencing the
electronic properties of the shell. Core metals with small
lattice constants such as Cr, Mo, and V stand out. These
cores induce compressive strain in the shell and transfer
charge to the shell. Both of these effects contribute to a low-
ering of the surface d-band level, which tends to make the
shell of the particle more noble.34 These cores tend to in-
crease catalytic activity by reducing the binding energy of
oxygen.

B. Comparison of the GA to other search methods

To compare the effectiveness of the GA to other search
methods, we examined all 900 core-shell metal combinations
for 38-atom particles and performed a large number of GA,
Monte Carlo �MC�, and random sampling �RS� simulations.
Simulations were run in sets of three so that the initial popu-
lations were the same for the methods. Overall, 300 simula-
tions were performed, 100 for each method. Initial popula-
tions were chosen as outlined in Sec. II.

Generations of 30 nanoparticles were maintained in the
MC and RS simulations; however, the processes by which
particles were selected and created for new generations were
different from the GA. In the RS simulation, each particle in
the population was replaced with a new, random particle. In
the MC simulation, a trial particle was generated for each
particle in the population by performing a single-point mu-
tation on the original particle �the trial particle therefore ei-
ther had a different core or a different shell than the original
particle; see Fig. 4�. Trial particles were passed to the next
generation according to the Metropolis acceptance
probability35

Paccept = min�1,e−��new−�old�/kBT� , �3�

where kBT is the effective thermal energy of the sampling,
taken to be 0.25 eV, corresponding to an average acceptance
probability of 17%.

The different optimization methods are compared in Fig.
7. For RS, the chance of finding a fit particle is constant and
equal to their fraction of the solution space. The fraction of
fit particles found with RS increases linearly with the frac-
tion of the solution space sampled. Both the GA and MC
methods outperform RS. Of the three methods, however, the
GA found the fittest particles most efficiently. The GA in
Sec. III A �represented by the black dot in Fig. 7� explored
15% of the solution space and found 37% of the fit particles;
the MC and RS methods found only 17% and 15% of the fit
particles, respectively, at this fraction of the solution space
sampled. A comparison of the fit particles found in Sec. III A
and the complete set found by brute force is shown in Fig. 8.

FIG. 6. Promising core-shell metal combinations for 38-atom particles re-
vealed by the GA. Dark squares indicate particles that have ��0.25 eV;
light squares have ��0.50 eV.

FIG. 7. Comparison of the GA, MC, and RS efficiencies. The fraction of
particles with ��0.25 eV found is plotted against the fraction of the solu-
tion space sampled. The GA in Sec. III A �black dot� found more than twice
as many fit particles as the other methods at that fraction of the solution
space sampled.

FIG. 8. Best 38-atom nanoparticles out of all 900 possible core-shell com-
binations. Dark and light squares are defined in Fig. 6. Squares with black
X’s represent the particles found by the GA in Sec. III A.
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C. 79-atom nanoparticles

We have also applied the GA to larger, more realistic
79-atom core-shell nanoparticles. The convergence of the
GA is shown in Fig. 9. Fit 79-atom particles found by the
GA are shown in Fig. 10. Horizontal trends are again promi-
nent, indicating that there may only be a few potential shell
metals for use in 79-atom core-shell ORR catalysts. These
metals are similar to those found for the 38-atom particles
and include Cu, Ir, Os, Pd, Pt, Rh, and Ru.

Stability is an important concern for the small particles.
In a few instances, core atoms were found to spontaneously
migrate to the shell during structural minimization indicating
that the particle was unstable. In the 79-atom GA, 35 of the
176 particles sampled �20%� did not meet our symmetry re-
quirement, and were removed from the GA.

Several of the core-shell metal combinations in Figs. 8
and 10 have been investigated experimentally. Ni@Pt was
among the very best of particles found by both the 38- and
79-atom GA. This combination of metals has been shown to
be very effective for the ORR by Stamenkovic et al.36

Ru@Pt has been shown by Alayoglu et al.37 to be an
effective catalyst for the ORR, as well as for CO oxidation
in H2-rich environments. Other examples include

Cu@Pt by Koh et al.,38 Fe@Pd by Shao et al.,39 and Co@Pd
by Savadogo et al.40 More candidates are shown in Figs. 8
and 10.

D. Oxygen binding on 79-atom particles

The energy level of the d-band is a good reactivity de-
scriptor for catalytic activity, but there are other factors that
determine adsorbate binding and reaction barriers; these en-
ergetics ultimately determine the reaction kinetics.41,42 To
further investigate the fittest 79-atom nanoparticle catalysts,
we have calculated the binding energy of atomic oxygen to a
fcc site on the �111� facet. The binding energy of oxygen
species on transition metals has been shown to be important
for the ORR and to correlate well with catalytic activity.43,44

The �111� facet was chosen because it generally binds adsor-
bates weakest. Most particles investigated are less noble than
Pt and bind oxygen too strongly, so the focus should be on
weak binding sites. It is possible, however, that the �100�
facet or the edge/corner sites on noble particles have suitable
oxygen binding energies to be good catalysts. These sites are
not identified here.

The relation between the oxygen binding energy and the
d-band center is shown in Fig. 11. There is a linear correla-
tion for particles with the same shell metal, yet there is con-
siderable variation in the trend across different shell metals.
This behavior is expected since there are other factors that
affect adsorbate binding strength, such as the filling of the
d-band and the overlap between adsorbate and surface metal
orbitals. When these factors are constant �a good approxima-
tion when the shell metal is the same�, a linear trend is ob-
served.
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FIG. 9. Convergence of the 79-atom nanoparticle GA.

FIG. 10. Promising core-shell metal combinations for 79-atom particles
revealed by the GA. Dark and light squares are defined in Fig. 6.
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FIG. 11. Binding energy of atomic oxygen at a fcc site vs d-band level of
the fcc atoms in the shell of 79-atom particles. The inset in �a� is shown in
�b� on a larger scale.
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To compare particles with different shell metals, the
binding energy of oxygen is a better measure of catalytic
activity than the d-band level. Metals with somewhat weaker
oxygen binding than Pt are expected to have higher ORR
activity.24 An oxygen atom binds at a fcc hollow site on the
Pt�111� surface with an energy of 1.93 eV relative to 1/2
O2�g� at 1/9 monolayer coverage.33 Binding to the �111� fa-
cet of a 79-atom Pt particle is very similar, as can be seen in
Fig. 11. In general, the binding energy decreases for reactive
cores, e.g., W@Pd, Mo@Pd, and Co@Pd. These trends hold
for other common shell metals, e.g., Pt and Rh.

If one knows the active site of the catalyst, the GA can
be improved to more specifically target these kinetics. In our
case, we used the average d-band level of the entire shell in
our fitness function. If oxygen binding to a fcc site were
known to be a more direct reactivity indicator, however, it
would make sense to use the d-band level of the fcc atoms or
even the oxygen binding energy itself. As long as these in-
dicators are correlated �as in Fig. 11�a��, any one of them
may be used to identify an optimal set of candidate catalysts.
Subsequent refinements of our fittest nanoparticle catalysts
with further calculations and experiments are needed to con-
clusively identify effective catalysts.

IV. DISCUSSION AND CONCLUSIONS

In this work, we used a GA to find core-shell nanopar-
ticles with d-band centers close to that of Pt�111�. For 38-
atom particles, reactive metals such as V, Cr, and Mo were
found to be good cores, while Cu, Ir, Mo, Os, Pd, Pt, Rh, and
Ru were found to be good shells. For 79-atom particles, no
core metals stood out, and Cu, Ir, Os, Pd, Pt, Rh, and Ru
were found to be good shells. Calculations of the oxygen
binding energy to the �111� facets of these particles showed a
linear correlation with the d-band center for particles with
the same shell, however, there was significant variation in the
trend for different shells. Using the oxygen binding energy as
a measure of catalytic activity, we were able to refine the set
of fit nanoparticles identified by our GA and suggest new
particles that can be tested experimentally.

GAs are only as good as their fitness function�s� allow
them to be. In this work, particle fitness was based only on
the d-band center of the shell, but other properties such as
stability and metal cost are also important. Stability is par-
ticularly important for core-shell particles whose catalytic
properties depend on the specific arrangement of the atoms.
Including the surface-segregation energy of the particles in
an oxidizing environment, for example, would be a good
way to refine our calculations and identify stable particles.
The GA could also be extended by using a more detailed
genetic encoding, e.g., one that specifies the element identity
of every atom in the particle instead of just the core and
shell. This would vastly increase the number of candidate
catalysts considered and extend their structures beyond the
core-shell catalysts considered here. Variable-length chromo-
somes, moreover, could allow 38-atom particles to breed
with 79-atom particles, the offspring of which could contain
an intermediate number of atoms.

Promising platinum alternatives must be developed if
fuel cells are to replace internal combustion engines as a
future means of utilizing chemical energy. Feedback between
experimentalists and theorists will likely play a critical role
in determining whether such catalysts exist. Optimizing
nanoparticles is easier to do computationally than experi-
mentally. Experiments, however, will ultimately determine
which catalysts are effective. Subsequent refining of our
methods and models will make them more accurate and bet-
ter able to identify effective catalysts in the future.
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