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Abstract: A recent letter to the editor (Quapp and Bofill, J Comput Chem 2010, 31, 2526) claims that the nudged elastic
band (NEB) method can converge toward gradient extremal paths and not to steepest descent paths, as has been assumed.
Here, we show that the NEB does in fact converge to steepest descent paths and that the observed tendency for the NEB
to approach gradient extremal paths was a consequence of implementation errors. We also note that while the NEB finds
steepest descent paths, these are not necessarily minimum energy paths in the sense of being a set of points which are
minima in the potential energy surface perpendicular to the path. An example is given where segments of steepest descent
paths follow potential energy ridges.
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Steepest Descent Paths

There has been some discussion in the literature about the paths
to which the nudged elastic band (NEB) converges. The NEB has
been described as a method to find a minimum energy (ME) path
between stable states.1–3 A more accurate description is that the NEB
finds a steepest descent (SD) path from saddle point(s) to minima,
a so-called intrinsic reaction coordinate (IRC).4 A recent paper by
Quapp and Bofill,5 claims that the NEB does not necessarily find
a SD path. Without spring forces, the authors claim, the NEB can
converge toward another kind of path called a gradient extremal
(GE). Here, we clarify that the NEB will only converge to a SD
path.

The NEB calculation discretizes a path into a set of images i,
which are subjected to projected forces,

FNEB
i = Fs‖

i + Fg⊥
i . (1)

Fs‖
i are spring forces that act parallel to the path τ̂ i,

Fs‖
i = k(|Ri+1 − Ri| − |Ri − Ri−1|)τ̂ i (2)

and Fg⊥
i are the forces due to the potential that act perpendicular to

the path,

Fg⊥
i = Fi − (Fi · τ̂ i)τ̂ i. (3)

Here, Fi = −∇V(Ri) is the negative gradient of the potential at
image i, τ̂ i is the local tangent to the path, and k is a spring constant
which is used to keep the images equally spaced along the path.

When the NEB forces are followed by an appropriate optimizer,
such as those described in ref. 6, convergence is reached when all
images lie on a SD path. The SD path is precise in the limit of many
images. A proof of this follows from considering the conditions
when the NEB forces vanish. When the parallel force from eq. (2)
is zero, the images are equally spaced,

|Ri+1 − Ri| = |Ri − Ri−1|, (4)

independent of the choice of spring constant k. When the perpen-
dicular force is zero, eq. (3) reduces to

Fi = (Fi · τ̂ i)τ̂ i, (5)

showing that the tangent τ̂ i to the path at each image i is parallel to
the force at that image, Fi. This defines a SD path.

In ref. 5, the authors claim that the NEB does not necessarily
converge to a SD path, but rather converges toward a GE. A GE
is a path containing a set of points in which the derivative of the
potential is parallel to a normal mode; it does not generally follow
the gradient.
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Figure 1. The grey points are the result of an NEB calculation described
in ref. 5, in which an initial (linear) band converges toward a GE path.
When the optimizer is corrected, the NEB is properly converges to a SD
path.

The example cited in ref. 5 is an NEB calculation on the NFK
potential as modified by Hirsch and Quapp.7 Figure 1 shows SD and
GE paths leading from a saddle point to a minimum on the potential
energy surface. With the NEB implementation used by the authors
in ref. 5, an initial linear band is seen to converge toward a GE. The
reason that NEB did not converge to the SD path is due to a coding
error in the damped-dynamics optimizer whereby sequential images
along the NEB would accumulate the velocity of previous images in
the band. Specifically, in a loop over images, i, the damped dynamics
velocity was calculated as V = V + !t Fi where V is the velocity,
Fi is the force on the image, and !t is the integrator time step.
Instead, the velocity should be calculated for each image separately,
Vi = Vi + !t Fi. When the code was corrected the NEB converges
to the SD path. The unequal spacing of the images in the converged
NEB is due to a choice of k = 0 in ref. 5. A more accurate path would
be found using the standard implementation of the NEB described
in ref. 2, with springs to keep the images equally spaced and an
upwinding tangent to avoid oscillations in steep sections of the path.
Two other changes would improve this calculation: fewer images are
required to identify the saddle point with the climbing image NEB,3

and second-order optimizers increase the rate of convergence.6

A second example, cited in ref. 5, of the NEB failing to converge
to a SD path is shown in Figure 2. The authors refer to a calculation
on the Wolfe-Quapp (WQ) potential, detailed in Figure 5 from ref. 8,
in which the NEB was found to converge toward a ridge and pass
through the maximum. Only five optimization steps were possible
before this calculation diverged. Again, a review of the code used
for this calculation revealed implementation errors. The primary
problem was that the sign of the force was incorrect so the ridge
appeared to the NEB as a valley. The perpendicular force on image
i was calculated as Fg⊥

i = Gi − (Gi · τ̂ i)τ̂ i where Gi = −Fi.
Instead, it should be Fg⊥

i = Fi − (Fi · τ̂ i)τ̂ i. Figure 2 shows a

properly converged NEB to a SD path passing through saddle point
(c), calculated using a corrected version of the code.

Minimum Energy Paths

The authors of ref. 5 bring up an important point about the NEB
which has not been widely addressed in the literature. It is commonly
assumed that the NEB finds a ME path. The term ME path can be
used interchangeably with SD path, in the sense that a SD trajectory
from a saddle minimizes the energy along the path. Here, we address
the alternate definition of a ME path as a set of points which are
energy minima perpendicular to the path, and in this sense, a ME
path is not necessarily the same as a SD path. This issue has been
extensively studied by Quapp, as well as related features on reaction
paths such as bifurcation points and ridge-valley inflection points.9

To show an example where the NEB finds a SD path which is
not a ME path, we have constructed a periodic potential containing
two Gaussian hills,

cos(πx) + cos(πy) + πe−πx2 [e−π(y−0.8)2 + e−π(y+0.8)2 ].

A contour plot of this potential is shown in Figure 3. The ME path
from the highest energy saddle point (b) terminates at nearby inflec-
tion points, where the SD path crosses the dashed line and the
positive mode perpendicular to the path (a valley) becomes neg-
ative (a ridge). The SD path continues on to saddle points (a) and
(c) and then to minima (A) and (D). In this example, the converged
NEB follows the SD path along the valley, where it is also a ME
path, but also along a ridge where the energy is a maximum per-
pendicular to the path. The NEB will follow such paths in the limit
of many images, but it will become unstable when |C| > |F|/!R,

Figure 2. The NEB calculation described in ref. 8 (grey points) from
minimum (A) to (C) on the WQ potential was shown to follow a ridge
between saddle points (a) and (c) through a maximum along a GE path.
When an error in the potential gradient is corrected (black points), the
NEB properly converges to a SD path through saddle (c).
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where C is the negative curvature perpendicular to the ridge, F is
the magnitude of the force down the ridge, and !R is the image
spacing. This analysis is closely related to stability analysis of the
NEB in ref. 2.

The NEB can follow ridges in higher dimensional systems as
well. An example is the diffusion of an Al adatom on the Al(110) sur-
face, which has been studied by Tiwary and Fichthorn.10 The adatom
sits in a (11̄0) channel on the surface, as shown in Figure 3. Calcu-
lations of diffusion pathways were done using the Vienna ab initio
Simulation Package using the PW91 GGA functional and the pro-
jector augmented wave method to treat core electrons.11 Valence
electrons were described using a plane-wave basis with a cut-off
energy of 250 eV. The adatom was placed on a p(4×3) slab with 10
bilayers, freezing the bottom five to the bulk geometry. A vacuum
gap of 15 Å separated the periodic images of the slabs, and a 6×6×1
Monkhorst-Pack mesh of was used to sample the Brillouin zone.

Figure 4 shows the lowest energy mechanisms for cross-channel
diffusion. The NEB calculation from minimum (A) to (D) converges
along a ridge in a transition analogous to Figure 3. The transition path
in Figure 4 climbs from minimum (A) up the ME path to saddle point
(a). Continuing on to (C) would lead to a diagonal cross-channel
diffusion mechanism. Instead, the SD path from the higher energy
saddle (b) (which is in fact a very shallow metastable minimum
separated by two saddles) is followed by an NEB connecting to (D),
resulting in diffusion directly across the channel. There are two ridge
segments highlighted in red, one between (a) and (b), and another
between (b) and (c), where the SD path is not a ME path.

To summarize, in the limit of many images the NEB converges to
a SD path. The SD path is often a ME path, but this is not necessarily
the case, for example when the SD path approaches a saddle via a
potential energy ridge.

Figure 3. The SD path (solid black) from the highest energy saddle (b)
terminates at minima (A) and (D) after passing through intermediate
saddles (a) and (c), respectively. The images in red are where the NEB
converges to a ridge along the SD path, which is not a ME path. The
dashed line is the boundary between regions with one and two negative
modes.

Figure 4. Al adatom cross-channel diffusion on Al(110) is shown
between four minima (A)–(D). Saddles (a) and (c) correspond to diag-
onal exchange processes where the adatom pushes a surface row-atom
into the neighboring channel along the 11̄1 and 1̄11 directions, respec-
tively. There is also a higher-energy cross-channel mechanism through
saddle (b). The SD path found by an NEB through this saddle connecting
minima (A) and (D) is shown to pass through the lower energy saddles
(a) and (c) via the ridge segments, shown in red.
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