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Within the harmonic approximation to transition state theory, the biggest challenge involved in
finding the mechanism or rate of transitions is the location of the relevant saddle points on the
multidimensional potential energy surface. The saddle point search is particularly challenging when
the final state of the transition is not specified. In this article we report on a comparison of several
methods for locating saddle points under these conditions and compare, in particular, the
well-established rational function optimizatigRFO) methods using either exact or approximate
Hessians with the more recently proposed minimum mode following methods where only the
minimum eigenvalue mode is found, either by the dimer or the Lanczos method. A test problem
involving transitions in a seven-atom Pt island on @LP1) surface using a simple Morse pairwise
potential function is used and the number of degrees of freedom varied by varying the number of
movable atoms. In the full system, 175 atoms can move so 525 degrees of freedom need to be
optimized to find the saddle points. For testing purposes, we have also restricted the number of
movable atoms to 7 and 1. Our results indicate that if attempting to make a map of all relevant
saddle points for a large systefas would be necessary when simulating the long time scale
evolution of a thermal systenthe minimum mode following methods are preferred. The minimum
mode following methods are also more efficient when searching for the lowest saddle points in a
large system, and if the force can be obtained cheaply. However, if only the lowest saddle points are
sought and the calculation of the force is expensive but a good approximation for the Hessian at the
starting position of the search can be obtained at low cost, then the RFO approaches employing an
approximate Hessian represent the preferred choice. For small and medium sized systems where the
force is expensive to calculate, the RFO approaches employing an approximate Hessian is also the
more efficient, but when the force and Hessian can be obtained cheaply and only the lowest saddle
points are sought the RFO approach using an exact Hessian is the better choice. These conclusions
have been reached based on a comparison of the total computational effort needed to find the saddle
points and the number of saddle points found for each of the methods. The RFO methods do not
perform very well with respect to the latter aspect, but starting the searches further away from the
initial minimum or using the hybrid RFO version presented here improves this behavior
considerably in most cases. @004 American Institute of Physic§DOI: 10.1063/1.1809574

I. INTRODUCTION number of studies have focused on developing or refining
methods for locating saddle points on PESse, e.g., Refs.

th eo\/rV|t?v|vr;] ef?hee rhirsnggn;cx ?Eﬁ)tqoxgrﬂlor;i;?wtrﬁgg;gontﬁéate 1-27 or references found in the reviews Refs. 28 and 29
y plcitly P 9 However, in many of these methods it is assumed that a

mechanism or rate of transition for a chemical reaction or for .
e . reasonable guess for the saddle point can be made and/or that
the diffusion of one or more atoms on a surface or in a bul . : . .
. ) : . the reaction proceeds to a known final state. If one is looking
system, requires the location of saddle points on the potenti . i . .
; " or saddle points describing yet to be discovered reaction
energy surfacéPES governing the transition. In these cases . g
. : “mechanisms or one would like to map out as many saddle
the transition rates are largely determined by the region . : . .
) . ) : oints as possible irrespectively of the final states, these
around the saddle points and their energy difference with th . :
starting minimum. It is therefore not surprising that a lar emQthOOIS will not suffice.
9 ' P g 9 An illustration of the importance of having methods that
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can be used to systematically walk from a given minimumferent system sizes. In the full system, 175 atoms can move
towards saddle points, without assuming any knowledge oo 525 degrees of freedom need to be optimized to find the
the final states, is the discovery by Feibelman in 1990 that asaddle points. In the medium sized system, only the seven
Al atom does not diffuse on the &I00) surface by repeated atoms of the island are free to mo{&l degrees of freedom
hops from one site to another, as had been previously a$n the small system, only one of these seven atoms can move
sumed, but rather by a concerted displacement of twdthree degrees of freedgnEven though the model interac-
atoms™® In chemistry, there are many reactions where theions are of a simple Morse form, the resulting PESs describe
mechanism and reaction intermediates are unknown, which wide variety of realistic transition mechanisms and provide
could in principle be tackled using transition state theory.challenging tasks for the PES walkers.

Examples include the photo-oxidation of water on Jj&)-2 The outline of the paper is the following: In Sec. Il the
which is relevant in the clean production of hydrogen, thedifferent methods considered are described. This is followed
conversion of NaAlH to NaAlHg,3 which is relevant to by a short description of the model PESs in Sec. Il and the
hydrogen storage, and several reactions important téesults and a detailed discussion of them are given in Sec. IV.
biochemistry**~° The number of methods currently avail- Conclusions are presented in Sec. V.

able allowing one to walk from a minimum to a saddle point, 4 POTENTIAL ENERGY SURFACE WALKERS
without any knowledge of the final state are limited, and, to All methods described below rely on a local approxima-

the best of our knowledge, a systematic comparison of suc oo . X
methods has not been reported. The goal of the present stu%]f/m o the PES using information about the gradigrind

is to provide such a comparison e exact or approximated Hessian matrxat the current
Many of the traditional methods used within the Chem_conﬂgurat!on of the systemy; . Using a!l or parts of the

. . - available information a step vectakx,, is calculated and
istry community that are able to start from a minimum and he system moved to a new configuratian ;=X + AX
converge on a saddle_ p_omt without using any knowledge o he series of geometry iterations is in our case started close
the final state are variations on the pioneering efforts of Cer- L . .
jan and Millet and Simonst al>°We have investigated the to a local minimum of the PES;, and continued until al
J ' o components of the gradient vector fall below a given thresh-
performance of some of these modified Newton-Raphson arid, s From a set of initial starting configurations the
proachegwe will refer to them as all-mode following meth- » O9max- g configure

q hich th tional functi timizati thod goal is to locate as many of the saddle points directly con-
0 s) which are the rational function optimization methods ' .4 t5 the minimum as possible.
using either exact or approximate Hessidiiwe second de- The methods we consider can be separated in two main
rivative matrix of the potential energy with respect to the classes
nuclear coordinatgsMore recently, a different approach has Q) I'n the minimum mode following methods only the
been proposed where only the minimum eigenvalue mode iﬁ)w

ired. Rather th tructing the full Hessi i est eigenvalue and the corresponding eigenvector of the
required. Raner than constructing the fufl Hessian Mmatri o qqian are sought and subsequently used together with the
and diagonalizing it, only the minimum mode is found. In

. . . gradient to determine the step vector. Either the Lanczos it-
th_ls study we will f(_)c_us on two represen_tanves of what Weg ative methodSec. 11 A) or the dimer methodSec. Il B
W,'" re;‘er to as minimum mode following methods, the .5, 1 ysed to find the minimum mode. In the form they are
.d|mer1. and Lanczos methodg.Other mgfchods could a];o be presented here they use exactly the same way of calculating
investigated, such as various preconditioffe¥$or modified

. . . o the step vecto(Sec. Il Q, the only difference lies in how the
eigenvector following method$,but our intention is to pro-

k : X lowest Hessian eigenvalue and the corresponding eigenvec-
vide a comparison between two main classes of saddle poiRf, 4re obtained

search methods and this goal can be reached by considering (i) In the all-mode following methods the full Hessian

representative members of each class. An important factor ig, iy js calculated or approximated, and all eigenvalues and

determining which method is the more successful is the NUMaigenvectors are used in conjunction with the gradient to

ber of force evaluations and geometry steps needed to reagfitermine the step vector. Here we have used a rational func-
the saddle points. Also the ability of the methods to discoveg;g, optimization approach as an example of an all-mode
as many saddle points as possible might play an importangiowing method. Two versions, one using the exact Hessian
role. The computational effort per relevant saddle pomt(SeC_ IID) and the other using approximate Hessi48sc.

found will eventually decide which method will be the pre- | g) are outlined below. We also investigate the behavior of
ferred one. In this study all these aspects will be discusseg hybrid methodSec. 11 B.

and the results might serve as a basis for further method-

ological improvements. A. A Lanczos iterative method for finding the
All our tests have been performed on a model systenflinimum mode
involving transitions in a seven-atom Pt island on élP1) The activation-relaxation technique nouve&dRTn)

surface using a simple Morse pairwise potential functionemployed in Ref. 19 was the first saddle point search method
This test system was previously used to study the efficiencyhat used a Lanczos iterative approach for calculating the
of various methods which rely on knowledge of both thelowest eigenvalue of the Hessian matrix. In this method the
initial and final staté® A relatively simple model system is system is moved stepwise from a local minimum along a
chosen in these studies to make it easy for others to reprgandom direction until a negative Hessian eigenvalue is en-
duce the results, apply other methods to the same systemountered. For each step the total energy of the configuration
and to allow for a rather extensive study including three dif-is minimized in the hyperplane perpendicular to the step di-
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rection. Once a negative eigenvalue has been found, the syShe tridiagonal matrices are constructed accordifg4t*
tem is pushed against the force along the eigenvector of the

Hessian corresponding to the negative eigenvalue, while o B

minimizing the force in all other directions. Unless the low- B1 ax B

est eigenvalue turns positive, this procedure ensures conver-  _ B asz - ' (1)
gence to a first-order saddle point, and as such it is an im- ' . )

provement of the earlier version of the activation-relaxation N v B

technique presented in Refs. 11 and 15. L Bj-1  aj |

Two methods similar in spirit to ARTn were previously
introduced by Munro and Walé§.

(i) In one approach a shifted power iteration schitfte
is used to find the eigenvector corresponding to the Iowesg
eigenvalue of the Hessian matrix. A step uphill along theiS used and setting8,=||ro]l andgo="0 the following steps
eigenvector corresponding to the lowest eigenvalue is theﬂre repeatedk(=1,...,):
taken, while a conjugate gradient method is used to minimize T
the total energy in all other directions. Although the method Me—1

where a4, ; and -, _j—, are obtained through an it-
erative procedure. Beginning with a vectar(if it is the first
eometry iteration a random nonzero vector is chosen, oth-
rwise the eigenvector found in the previous geometry cycle

only uses information about the eigenvector corresponding to qkzlgkfl’ 2

the lowest eigenvalue, the full Hessian matrix needs to be

constructed in each step. But what has been gained is that Ux=Hdj, ()]

there is no longer a need for a full diagonalization of the

Hessian matrix, an operation that can become prohibitive for Mk= Uk~ Bi—10k-1, )

arge systems. | o a=airi, ®
(i) The second approach relies on a variational tech-

nique where the Rayleigh-Ritz ratf' is minimized =" a i, (6)

through a conjugated gradient method. In this way the lowest

eigenvalue and the corresponding eigenvector can be ob- Bi=lrull- @)

tame_d W|t_hout haymg_ to build the _fuII Hessian matrix. _The For each new sdi, , B,_,} the lowest eigenvaluleI“ of Ty
obtained information is then used in the same way as in the

first approach to step towards a saddle point. 'S found. Once

In Ref. 24 the Davidson meth8twas used to efficiently )\Tk_)\Ik—l
characterize the stationary points on a PES by computing the T | <ML (8)
lowest eigenvalue of the Hessian matrix. Although the 1

method was only used to determine whether a stationar ; : - Trei
the eigenvalue is considered converged\te=\,*". The

point was a local minimum or a saddle _pomt, .'t Was SUg-.pgice of S\, will be discussed later. We also consider the
gested that the method could be used in conjunction with

. ) : . . possibility of terminating the iteration cycles aftef**itera-
eigenvector-following methods as an efficient way of opti tions. If the full Hessian is not known in a given basis of

e;'.’)rimitive vectors, the second step in the iteration cycle above

of the class we refer to as minimum mode following [Eg. (3)] can be replaced by the finite difference approxima-

methods. fion
In the following we will describe in some detail how one

of the schemes used here, the Lanczos scheme, can be used o(X) —o(X;)

to calculate the minimum mode. The Hessian matrix is real Uk:T' ©)

and symmetric and can therefore be reduced to a tridiagonal

form by an orthogonal similarity transformatiofi=Q'HQ  With

(t der_10tes the tran_sp(js‘@TAfter obtaining thg e_lge_nvalue X=X+ OX_ Gl (10)

and eigenvector pair§\;,v; }i—1. , of T, the similarity en-

sures that the eigenpairs aff are given by {\;,v;  Wherex is the current configuration of the system anthe

=QV/}i_1. . n (the superscripT is used to indicate that the gradient at the configuration indicated. The choicesaf

eigenvector is obtained from the tridiagonal maifix If, as ~ will be discussed later. As can be seen from E@.and

in our case, one is interested in the lowest eigenpair only(10), the second derivative of the potential energy only needs

{\1,v1}, a Lanczos scheme can be used to construct a set & be calculated along the Lanczos vectors. Note that the

tridiagonal matrices{T,,...,T;}, whose lowest eigenvalue iteration formulas, Eqgs(2) through (7), do not contain a

will converge to\; asj increase4-4344The advantages of reorthogonalization stef}:***4In the cases we have consid-

the Lanczos scheme are thatiit replaces the diagonaliza- ered here the convergence is fast enough to ensure that the

tion of thenxn Hessian matrix by the diagonalization of a orthogonality of the Lanczos vecto#gy,,...,q;}, is not lost.

tridiagonal matrixT;, wherej<n whenn is large, andii) The eigenvalues of the matricés._; _; can be ob-

requiresH to be known only in a smalf,-dimensional basis tained efficiently using a standard QL algorithm with implicit

of the Lanczos vectors in whidH is tridiagonal, rather than shifts*? Once the lowest eigenvalue is considered converged

in ann-dimensional basis of a given set of primitive vectors.to )\1=)\IJ’, the corresponding eigenvectmIri, can be found
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by inverse iteration. To be able to use the very efficientmagnitude of the rotational force a¥p/2 is found through
Cholesky factorization scherffethe eigenvalue spectrum of F:(F*L.(:)* + FL'®)/2 and a finite difference approxima-

T; is shifted so that all eigenvalues are positive. Furthermore;gn 1o the change in the rotational foréat 56,/2) is ob-

to ensure fast convergence of the inverse iteration, the lowegtieq by

eigenvalue is set to a small positive numhgT,';]a" (we have

used\. _=10"* eV/A?). Finally, since the set of orthonor- , F.0"-F.0 15

mal Lanczos vectorgq;,...,q;} form the column vectors of 80p '

the matrix Q, the eigenvector corresponding to the lowest

eigenvaluex ; of H can be obtained through=QvIj (note

thatQ is of dimensionn X j, andvIj of dimensionj x1).
From the outline of the Lanczos method given above and 1 I'GZF

Subsequently, the angle with which tseconddimer now
has to be rotated to minimize the dimer energy is givell by

the method used to calculate the geometry ¢8sz. 11 O, it A¢g=—arcta F) — 06pl2. (16)
is clear that there are many parameters available for tuning to
reach optimal performance. However, very good perforFinally, if the rotational curvatur&’ is negative the rotation
mance can be reached by adopting “standard” settings. Thiby A6 will move the dimer towards docal) maximum for
will be discussed in more detail in Sec. IV. the dimer energy. In this case adding? to A6 ensures that
the rotation is towards the minimum. Note that the term
80p/2 in Eq. (16) is appropriate since the rotational curva-
ture is estimated most accurately by Ef5) for the mid-
Since a full presentation of the dimer method was giverpoint of the two dimers, using central differencing.
in Ref. 17 we will only review the important aspects of the If the dimer method is used to fully converge the lowest
method here together with some modifications. The dimergigenmode the procedure can be summarized as follgyvs:
consisting of two auxiliary configurationémages of the  The rotational force on the first dimer is calculated. If it is
system, is defined by below our chosen convergence criteriérs 6Fp, the eigen-
vector corresponding to the lowest eigenvalue is considered
converged tos;=N and the eigenvalue calculated fram
x,2=x|— S%oN, (12) =[(F,—F,)-NJ/28xp. (ii) If the rotational force is not be-

) ] ] low the chosen criterion, the rotational force is obtained for
wherex, is the current configuration of the system &b the second dimer, the angle with which the second dimer
determlAnes the displacement of the two images along a Unffeeds to be rotated is calculated using @), and the sec-
vector N (in the first geometry iteration a random nonzeroond dimer is rotated accordingly. The procedure is repeated
unit vector is chosen fax, while for the following geometry until the convergence criterion ifi) is met. Note that for
iterations the lowest Hessian eigenvector found in the previeach rotation of the dimer, two force evaluations are needed.
ous cycle is used. The choice &% will be discussed later The given procedure can be used to fully converge the
Next, the dimer energy is defined as the sum of the energidewest eigenmode, but as we will see in the following the
for the two imagesVp=V;+V,. The essential feature of dimer method needs considerably more force calls to reach
the method is that wheW is minimized under the con- convergence than the Lanczos method using this approach.
straint of fixedx, and 8xp, i.e., a rotation of the dimer However, by limiting the number of dimer rotations in com-
around the midpoint, the dimer will align itself along the bination with a less strict convergence criterion for the rota-
eigenvector of the Hessian matrix corresponding to the lowtional force, the number of force evaluations can be drasti-
est eigenvalue. cally reduced. We do this by adding to the scheme outline

The following set of iterative operations will accomplish above: (iii) If we have reached the maximum number of
this: First, the forces=; = —g(x;) andF;=—g(x{) are cal- allowed dimer rotationa}® the eigenvector is then approxi-
culated, and then used to approximate the force at the secomaiated by the normalized vector along the rotated dimer. Oth-
image throughF,=2F —F;. Next, the scaled rotational erwise we repeat the procedure starting froin The eigen-
force acting on the dimer is obtained b =(F; value corresponding to the obtained eigenvector is calculated
—F3)/8xp, whereF =F,— (F;- N) N fori=1,2. Asecond differently depending on in which step the iteration cycle is
unit vector(normal to the first by constructioiis defined as ~ Stopped: If the criterion irfi) is met the eigenvalue can be
O=F'/|F*|, and subsequentljl and® are rotated through ©OPtained as in the paragraph above,=[(F,—F))
an angles6p, within the plane spanned by the two unit vec- - N1/20xp. However, if the iteration cycle is terminated at

tors, giving two new orthonormal vectole* and®*. Then step (i), a bit more effort is needed. This is because we

B. The dimer method for finding the minimum mode

Xt =x+ dxpN, (11)

a second dimer is formed would like to avoid performing an extra force evaluation to
. get a reasonably accurate estimate of the eigenValate
x|l* =X+ SxpN*, (13 that after the rotation of the dimer in stép) we have no

_ . direct information about the fo[ces on the rotated dimer
X" =% — oxpN7, (14 First, a curvature estimate alofy* is obtained througlC

and the forces,, = —g(x'*), Fo, =2F —Fy,, andF**  =[(F5—F¥)-N*]/26xp. Then, using the local quadratic

=(F1, —F3,)/8%p calculated. In the following step the approximation as indicated in Ref. 17, the obtained curvature
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estimate can be corrected to give a reasonable estimate fbfiller showed (through the use of a Lagrangian multiplier
the curvaturgeigenvalug along the rotated dimer through  techniqué' that a modified Newton-Raphson approach could
be turned into an efficient PES walker. With steps deter-

Ny =C— 3||[F**[tan(A 6— 56p/2). A7) mined by
It is important to note that using a modified conjugated gi
gradient approach to determine the rotational pléaee de- Axj=— o (19
|

scribed in Ref. 1yimproves the performance of the method,
especially for large systems. The improvement the conjuwhereAx; andg; are the components of the step and gradi-
gated gradient method offers compared to the steepest deceetit vectors, respectively, in the Hessian eigenvector basis
method is due to the former using the force at previous it{Ax=3{",Ax;v;, g==_,0;v;, v; being the Hessian eigen-
erations in addition to the force at the current iteration tovectors, and\; the Hessian eigenvalugeghey outlined how
determine the optimal direction of minimizatiéf. v could be chosen in order to walk efficiently from close to
The above outline indicates that there are many parama minimum to a saddle point. In ReB a more detailed
eters which can be adjusted when using the dimer methodccount on how to choose the optimalvas given(leading
However, in practice there are simple strategies which can b® somewhat different recommendations than in RgfAh
used to restrict the parameter space. This will be discussed important element of the strategy is that\if>0, y can be
more detail in Sec. IV. chosen in such a way as to ensure an uphill walk along
and a downhill walk in all other directions. Then, in Ref. 5 it
C. Determining the geometry step using the minimum was shown how Eq(19) can be obtained when a rational
mode only function optimization(RFO) approach is used to approxi-

Compared to the effort needed to obtain the Iowesfﬂate the PES locally by
eigenpair of the Hessian, calculating the step vector for the gt Ax+ EAXH-AX
minimum mode following methods is relatively straightfor- V(X 4+1)—V(X)= i
ward. As noted in Ref. 17, the force at the current configu- 1+A%-S-Ax
ration will tend to pull the system towards the minimum, butand choosing= y1. Here we have chosen to work with the
simply inverting the component of the force along the lowestslightly more general form 0§ (also introduced in Ref.)5
eigenmode will tend to move the system towards a saddlehere the components of the step vector are calculated
point on the PES. Another useful trick is to force the systemthrough
to move only along the lowegapproximate eigenmode in
convex regions of the PES, resulting in the system leaving Ax;= — 9i , (21)
the convex region faster. Both strategies can be combined by Ni— i
using a modified force to determine the direction of the steRyjth x,— 4, given by

vector as follows: 1 > 7
C(Fivov, 0 A0 Ni—yi=zdi(IN[+ VN +49)),

Fi—2(F-vy)vy if N\;<O ' (18 d;=-1, dj=1 for i={2,...n}. (22

where\ , is the lowest eigenvalue and the corresponding This defines a walker that will move uphill along the lowest
normalized eigenvector of the Hessian at the current positiofigenmode of the Hessian and downhill along all other
x. Next, the length of the step should be determined. Oufodes. The particular choice for the rescaling of the Hessian

approach is to do a line search along the direction of th&igenvalues has been motivated by the considerations in
modified force by evaluating the force & =X, + XN, Refs. 5 and 6. We also ensure that the total length of the step

with NT=F"/|[F|| (the choice ofx;, will be discussed vector||Ax||=| = ,Ax;v;|| does not exceedx™®* Standard

laten. Equation(18) is then used to calculate the modified LAPACK (Ref. 43 routines for real symmetric matrices
force atx* and the magnitude of the force and the curvature.have.bee” used to calculate all eigenvalues and correspond-
along the direction of displacement at*(+x;)/2 are given N9 €igenvectors.

by F=(F*T+F").N'/2 andC,,=(F*T—F")-N"/6x)p,, re-

spectively. Finally, the step vector can be calculated from

Ax=(—F/Ci+ oxm/2)N'. To avoid stepping too far the E. Rational function optimization: Approximate
step length is not allowed to excedk™®* (to be discussed Hessian

later), and to ensure that we are leaving the convex region as . . N
! g 9 As already noted in Ref. 3 there is nothing in the proce-

fast as possible the step length is always"®in this region. ) . )
A conjugated gradient approach to determine the direction Ogure_ described aboyéSec. 1Dy that requires the Hes_S|an
matrix to be exact—it can equally well be applied using an

the step vector is used to reduce the number of force calls . . . .
) approximate Hessian. We have used two different updating
needed to reach a saddle point.

schemes

(20)

T=

D. Rational function optimization: Exact Hessian Hi 1=H,+AH,, (23

Based on a Taylor expansion of the PES around a currerine due to Powélf and the other to Bofilt® The Powell
position and a constraint on the step length, Cerjan andpdate is given by
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AHIPoweII
:(A9|+1—H|‘AX|)'AX|t+AX|'(A9|+1—H|'AX|)t
Axj-Ax
. Ax;-Ax
—(Ag+1—H-Ax) 'AX'(AX}-TQZ (24)
with Ag, . 1=9(X+1) —9(X), and the Bofill update by
AH|BOﬁ" — ¢BOfiI|AH|SRl+ (1_ ¢BOfi||)AH|POWE||, (25)
whereAH ! is a symmetric rank one updéfe
Agy1—Hi-AX)-(Ag 11— H-AX)"
AH|SR1=( O+1— M - (Ag1—H, 1 (26)

(Ag+1—H;-Ax)'Ax ’
and the Bofill factor is given by
[(Ag+1—H-Ax)"-Ax]?

[(Ag+1—Hi-AX)" (Agis1—Hy- Ax)J(AX;- Ax)
(27)

BBl =

F. Rational function optimization combined

Finding saddle points 9781

V(r)=Dg(e 2%~ T —2e a(r~To)) (28)

with parameters chosen to reproduce diffusion barriers on Pt
surfaced®  D,=0.7102 eV, «=1.6047 A1 1,
=2.8970 A. The potential is cut and shifted at 9.5 A. The
surface is represented by a six layer slab where each layer
contains 56 independent atoms and periodic boundary con-
ditions have been applied.

In order to study how the walkers perform on PESs of
different dimensionality, the number of atoms allowed to
move have been varied.

(i) In the full system the seven-atom island and the top
three layers of the slab are free to move, the bottom three
layers being kept frozen. There are 175 atoms free to move,
thus the PES is 525-dimension&R25D).

(ii) In a reduced size system only the seven-atom island
atoms are allowed to move, whereas all atoms in the under-
lying slab are kept frozen. This represents a 21D PES.

(iii) In the second reduced size system only one edge
atom of the seven-atom island is free to move whereas all
other atoms are kept frozen, giving rise to a 3D PES.

In all cases 500 initial configurations have been deter-
mined by displacing randomly the atoms of the seven-atom
island that are free to move a distank&™". The searches

. ) ) _ are stopped when all components of the gradient vector falls
sian can in some cases encounter problems with leaving thBeIOW the thresholdsg,.,=0.001 eV/A. In the following

convex region. Also, by construction, they will tend to climb section the results are presented in the order of increasing

out of the_ convexregion by followmg_the lowest Stre{,"mbed'dimensionality of the system, before some overall trends are
When trying to discover all saddle points around a minimumy, ined.
this tendency can become a weakness compared to the mini-

mum mode following methods. Based on our experience

with the minimum mode following methods we propose a|\, ReSULTS AND DISCUSSION
new hybrid RFO approach which partly remedies this prob-

lem: In the convex region the step vector can be determine@- One atom free to move

as in Sec. Il C using only the lowest eigenvalue and the cor- A contour plot of the 2D PES obtained by minimizing
responding eigenvector of the Hessian. Thus the hybrid PEge potential energy along the coordinate for motion normal
walker is a minimum mode following method when the sys-g the surface for each lateral position of the edge atom that
tem is located in a convex region of the PEfthough the i free to move is shown in Fig. 1. There are five saddle
Hessian matrix is updated for each step when using approxjoints within 4 eV of the starting minimum that are directly
mate Hessians Once the lowest eigenvalue of the Hessianconnected to this minimurfgiven by all atoms in the seven-
becomes negative the traditional RFO approach as describegom island being located in neighboring fcc sites, see Fig.
above is used. This approach is similar in spirit to the tWo2). Two of the saddle pointéat 1.693 and 1.978 eV above
methods introduced by Munro and Walftand the ARTN  the minimum are found when the atom is moving around
The main difference is that no optimization in the hyperplanene jsland keeping as close to the neighboring edge atoms as
perpendicular to the step direction is performed in the conpgssible. A third saddle poir®.134 eVf is found when the
vex region, and the full Hessian matrix is constructed ancyiom is moving away from the six other island atoms. The
diagonalized in each step. The method will therefore suffekgyrth and fifth saddle point8.665 and 3.667 elare found
from the same computational bottleneck as the traditionajypen moving the atom on top of the island.
RFO methods with respect to the diagonalization of the Hes-  The Lanczos results were obtained with settings shown
sian matrix for large systems, but it will in most of the casesjn Taples | and I, together with the parameter ranges tested
we have considered lead to appreciably more saddle pointghd found to give similar results. As seen from the tables and
found. Secs. IIA and 1l C, there are a number of parameters avail-
able for tuning. In this study we have made an effort to reach
optimal search performance, and this has lead to some rec-
ommendations towards standard parameter settings that
could be adopted by others. This will be discussed in more
As in Ref. 28, all the PES walkers have been tested on detail in Sec. IVD. The search results for the Lanczos
model system involving transitions in a seven-atom Pt islandnethod are given in Table Il and we see that on average
on a P(11)) surface. The pairwise interaction between theabout five force calls per geometry step are needed to reach
atoms is given by the Morse potential the saddle points: one is used to calculate the gradient at the

with a minimum mode following method:
A new hybrid approach

The RFO approachdwith an exact or approximate Hes-

IIl. MODEL SYSTEMS AND POTENTIAL ENERGY
SURFACES
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TABLE I. The finite difference parameters used for the Lanczos and dimer
methods. Also indicated are the parameter ranges tested and found to give
similar results to the ones presented in this study.

=
= Lanczos Sx. (A) i (R)
<o
b= Used 104 1073
> Tested 106-1072 1074-10*
<
g Dimer Sxp (R) 56p (rad) X (A)
w
= Used 104 10°* 10°3
g Tested 105-101 10 °-101 10 4-101
2
ol

be tuned to reach optimal performance, and that has been
4 6 8 10 12 done here. This has lead to some recommendations towards
Position in surface unit cell [A] standard settings for others to usee Sec. IV D The dimer
results are given in Table Il and it is seen that the short
FIG. 1. A contour plot of the PES obtain_ed by choosing the optimal hgigh_t aximum step Iength of 0.1 A results in the third saddle
above the surface for the one atom that is free to move for each position in . . . . . .
the surface plane is displayed. The positions of the five saddle points gipoint not being found, if the dimer method is used in the
rectly connected to the starting minimum are marked by filled squares witinode that the dimer is rotated until the lowest eigenmode is
the corresponding final states indicated by filled circles. The starting minifylly converged (the maximum rotational force allowed
mum is indicated by+. The six other atoms in the seven-atom island that needs to be set t6F,=0.01 eV/A or lower to reach con-
are kept frozen are indicated by the croséee also Fig. 2 The contour . L
spacing is 0.2 eV. vergencg That this behavior is the same as for the Lanczos
method is to be expected on the basis that the Lanczos and
dimer methods use exactly the same algorithm for calculat-
current position, three are used to converge to the lowedtid the geometry step. The only difference between the two
Hessian eigenvalue, and the last one is used in the line minmethods is how many force calls are needed to reach a con-
mization. We note that when using a maximum step length o¥erged lowest eigenmode. From Table Il we see that when
0.1 A the third saddle point listed in Fig. 2 is not found the dimer is allowed to rotate until the lowest Hessian eigen-
within the 500 searches performed. This can be understooglue is fully converged on average about 6.8 force evalua-
from looking at Fig. 1: When using a short maximum steptions per geometry step are needed. However, by allowing a
length and a fully converged lowest eigenmdtiés can be maximum of only one dimer rotation per geometry step in
obtained withé\ =0.01 or lowey, getting into the region combination with a less strict convergence criterion for the
which would allow for a convergence on the third saddlerotational force §Fp=1.0 eV/A), theaverage number of
point is rather difficult. Using a longer maximum step lengthforce calls needed is considerably reduced. With these search
solves this problem. parameters the dimer method is somewhat more efficient

The results for the dimer method were obtained with thethan the Lanczos method with respect to the average number
settings given in Tables | and Il. Parameter ranges tested arftf force calls needed, and all the five saddle points are found.
found to give similar results are also indicated. As for theThis is the way the dimer method should be employed—
Lanczos method, there are a number of parameters that c&i§ing the dimer method to fully converge the lowest Hessian
eigenvalue is not a good strategy, as is demonstrated by the
results in Table Il. For the longer maximum step length
AXx™>=0.5 A good performance was reached with a maxi-
mum of one or two dimer rotation anéF,=1.0 eV/A. As
for the shorter maximum step length the dimer method is
somewhat more efficient than the Lanczos method with re-
spect to the average number of force calls needed.

The results of the RFO approach using the Bofill and
Powell updaters are very similar, and therefore only the Bo-
fill results have been included in Table Il. They show that
there is a significant decrease in the average number of force
evaluations needed to find the saddle points when increasing
the maximum step length from 0.1 to 0.2 A. It is also seen
that increasing the step length beyond 0.2 A leads to addi-
tional reduction in the number of force calls, but at the same
time a rather large number of unwanted search results is
F16. 2. The initial confiauration without the random disol < and th produced. Somewhat surprisingly, it does not matter very
five.sa.ddleeplgilr:;lgg)ntlggl;er?hleornvz\iltlh t?llé coerr(raasr;o%rginésﬁnaélclecnc:r?;;gstj’rgzonsemUCh whether the RFO search using an approxinfafe

(right), are shown for the 3D PES. The saddle point energies with respect tgaf[ed He_SSian is started with an exact initial Hessian or a
the initial configuration are also indicatéith eV). unit matrix.
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TABLE II. The overall performance of the different PES walkers is shown for the case where one edge atom of the seven-atom island is fre&x8%¥hove.

is the maximum step length allowen"S is the number of saddle points found within 4 eV of the starting minimum and directly connected to it; there are five

of them.» indicates how many of the searches found one ohiftesaddle pointgout of 500 searches performedf) and(s) are the average number of force

calls and geometry steps needed, respectieindicates how many searches found saddle points within 4 eV of the starting minimum and not directly
connected to ito\ is the Lanczos eigenvalue convergence criterigif;’ is the maximum number of dimer rotations, affy, is the convergence criterion

used for the rotational force. For the approximate RFO methods searches have been started both with a unit matrix and an exact Hessian. Albresults are f
a random initial displacement d@fx@'=0.1 A.

Method AXT (A) n's v (f) (s) 7

Lanczos(Secs. Il A, I1Q, 6\ =0.01 0.1 4 458 144.9 29.8 0
o\ =0.01 0.5 5 479 75.7 15.9 0
Dimer (Secs. 1B, 11 Q, 6F=0.01 eV/A 0.1 4 458 203.6 29.8 0
ng®=1 and5Fp,=1.0 eV/A 0.1 5 441 112.1 32.8 3
np¥=1 andsF,=1.0 eV/A 0.5 5 323 60.5 17.6 119
np=2 andsFp=1.0 eV/A 0.5 5 440 70.4 17.2 22
RFO (exact, Sec. Il D 0.1 5 500 25.9 25.9 0

0.5 5 500 10.2 10.2 0
Hybrid RFO (exact, Secs. II D, Il 0.1 5 458 25.0 25.0 0

0.5 5 482 8.5 8.5 0
RFO (Bofill, Sec. Il B 0.1 5 498 30.2 30.2 2
Exact initial H 0.1 5 497 30.0 30.0 3

0.2 5 487 21.2 21.2 11
Exact initial H 0.2 5 491 19.9 19.9 9

0.5 5 292 18.5 18.5 146
Exact initial H 0.5 5 340 19.2 19.2 140
Hybrid RFO (Bofill, Secs. Il E, II B 0.1 5 427 35.2 35.2 7
Exact initial H 0.1 5 487 30.1 30.1 0

0.2 5 298 23.3 23.3 7
Exact initial H 0.2 5 450 20.4 20.4 40

0.5 5 203 19.1 19.1 101
Exact initial H 0.5 5 178 15.4 15.4 212

When limiting the maximum step length to 0.1 A it is is rather good even for a maximum allowed step length of
seen from Table Il that the number of geometry steps neede@dl5 A—that the approximate RFO schemes lead to a large
to reach the saddle points is quite similar for all the differenthumber of unwanted search results is due to the not suffi-
methods. But in terms of the average number of force callgiently accurate approximation of the Hessian eigenmodes in
needed the minimum mode following methods perform subthese schemes.
stantially worse than the RFO approaches. The reason is that The performance of the hybrid methods, both with exact
for the minimum mode following methods a number of force and approximate Hessians, has been checked and found to be
calls are needed per geometry steggartially) converge the quite similar to the original ones with respect to the average
lowest eigenmode of the Hessian and perform a line miniminumber of force call§Table Il). For the hybrid RFO ap-
zation step, whereas the RFO approaches only need omeoach with an exact Hessian the number of force calls
force call per geometry step. We also note that the approxineeded is reduced slightly compared to the RFO approach
mate RFO scheme is almost as good as the exact one forvdth an exact Hessian. For the hybrid RFO approach with
short maximum step length, indicating that the updating for-approximate Hessians starting the searches with a unit matrix
mulas result in a rather good approximation to the full Hesresults in a slight increase in the number of force calls as
sian matrix. compare to the RFO approach with approximate Hessians

Increasing the maximum allowed step length reduces thestarting with a unit matrix. The number of force calls is about
average number of geometry steps and force calls needed tioee same when comparing the traditional and hybrid approxi-
reach the saddle points for all methods tested, as seen fromate RFO schemes with an exact initial Hessian, except for
Table 1. However, the reduction is the strongest for the RFQAx™"'=0.5 A where there is a decrease with the hybrid
method with an exact Hessian. The higher reduction factoscheme. The hybrid approximate RFO schemes with a maxi-
for the RFO method with an exact Hessi@bout 2.5 when mum step length of 0.5 A both result in more than a half of
increasing the maximum step length from 0.1 to 0)cdm-  the searches leading to unwanted results.
pared to the minimum mode following metho@sbout 1.9 All results discussed above have been obtained with
indicates that the knowledge of all eigenmodes versus onlAx™"=0.1 A (the distance with which the initial configura-
the lowest eigenmode helps considerably in reducing thé&on is randomly displaced away from the starting minimum
number of force calls needed to reach the saddle points. Fuffests varyingAx™"in the interval 0.1-0.3 A show that the
thermore, the results in the table suggest that the local, seaverage number of force calls needed to reach the different
ond order approximation to the 3D PES when making a stegaddle points hardly changes, except for a slight increase for

Downloaded 22 Nov 2004 to 146.6.143.211. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



9784 J. Chem. Phys., Vol. 121, No. 20, 22 November 2004 Olsen et al.

200 * ;e ' ! ] The Lanczos and dimer resulfBable 1ll) were obtained
i 3100 after a considerable effort searching the large parameter
1501 * * 7 space for optimal performance. The resulting settings are in-
100 - I I 1 I 410 E dicated in Tables | and Ill. As a results of the effort to reach
= 50 (@) ] ﬁ optimal search performance, a set of standard parameter set-
© [ : : : = é tings was developed that could be adopted by others. This
=y * 1100 g will be discussed in more detail in Sec. IV D. When fully
% 15k * *] 2 converging the lowest Hessian eigenvalue the Lanczos
5 10f I I 110 3 method needs on average about 8.7 force calls per geometry
= % I g step for Ax™=0.1 A (6N, must be 0.0001 or lower to
Ry (b) 1 - reach convergenge whereas the dimer method requires
fc;o — aie f } 3 1 fﬁ: about 16.4 force calléhe maximum rotational force allowed
g 6ol 41005 needs to be set t6F ,=0.01 eV/A or lower to obtain con-
< ask ] g verged results This clearly indicates that the Lanczos
30| % f _ 10 g method is better in converging the lowest eigenmode than
sk © ] = the dimer method for a given geometry. However, fully con-
L , , , C 4 verging the lowest Hessian eigenvalue at each geometry step
1 2 3 4 5 is not a good strategy when employing the dimer or Lanczos
Saddle point number method. Optimal performance for the dimer method for

max_— H H H H _

FIG. 3. In the figure the average number of force cdilled circles needed A,X =0.1 A is obtained when “mltmg txhe nljlmber OT rota
to find the saddle pointhe saddle point corresponding to the saddle point tions allowed for each geometry stepp(”=1) in combina-
number is indicated in Fig.)2s shown together with the maximum and tion with a less strict convergence criterion for the rotational
minimum numbt_er of'for_ce callg‘error” bars) for the 3D PES(left axis is force (5FD:0-1 eV/A). Asseen from Table lll this leads to
used. The asterixes indicate how often the saddle points were f¢oundof | b f saddl ints bei i d d ked
the 500 searches performed, right axis is yséibte the logarithmic scale a larger mj'm €r or saddle points being found, and a marke
on the right axes. Ia) the results for the Lanczos method are displayed decrease in the average number of force calls needed per
with Ax"®=0.5 A andAx™"=0.1 A, in (b) for the RFO method employing  saddle point found that is directly connected to the starting
an exact Hessian withx™=0.5 A andAx®=0.3 A, and in(c) for the minimum (if the goal is to locate as many saddle points
RFO method with a Bofill update starting with a unit matrixx™m . . - . ..
—0.15 A, andAx™@=0.3 A. directly connect to the starting minimum as possible, this is

an important measure of the success of a series of searches

The performance of the Lanczos method Ax™=0.1 A

the approximate RFO schemi@ssults not shown However, ~¢an also be improved by limiting the number of Lanczos
the choice ofAx"" do to some extent influence the number iterations for each geometry step{{*=3) and using a less
of times the different saddle points are found. For all meth-strict criterion for the Lanczos eigenvalue convergence
ods except Lanczos the number of times the third, fourth(A=1.0), even though the effect is smaller than the effect
and fifth saddle points are found increases with increasin§f limiting the number of rotations for the dimer method in
Ax"" together with a decrease in the number of times thé&onjunction with a less strict convergence criterion for the
first and second saddle points are found. For the Lanczo®tational force. From Table Il we see that increasing the
method the third saddle point is found most often withmaximum step lengthx™*is an efficient way of increasing
Ax™®=0.1 A. From the results presented in Fig. 3, we sed¢he number of saddle points found and decreasing the aver-
that the Lanczos method performs somewhat better than thkge number of force calls needed per saddle point found that
other methods with respect to the number of times the modg directly connected to the starting minimum. Starting the
difficult to locate saddle pointthe third ong is found. An-  searches further away from the minimutby increasing
other way of increasing the number of times the third, fourth, Ax®") also improves the efficiency of the minimum mode
and fifth saddle points are found for the RFO approaches ifollowing methods for finding as many saddle points as pos-
to use the hybrid version, but the Lanczos method still resible. In this way, more saddle points are found with the
mains the more efficient at finding the most difficult to locateminimum mode following methods than with the RFO meth-
saddle point. ods. The results of Table Il indicate that the two minimum
mode following methods are rather similar both with respect
to the average number of force calls needed to reach the
saddle points and the number of saddle points found directly
We have found more than 250 different saddle pointsconnected to the initial minimum.
within 4 eV of the starting minimum and directly connected The RFO approach with an exact Hessian is from Table
to it. Even though they can be grouped together in classeldl seen to be very efficient compared to the minimum mode
describing similar transition mechanisms, there are moréollowing methods. For the same maximum step length con-
than 25 of these classes. Since our goal is to compare hosiderably less geometry steps and force calls are needed to
the different saddle point search methods perform, and not teeach the saddle points. As in Sec. IV A, this indicates that
provide a full analysis of possible transitions mechanisms fothe knowledge of all eigenmodes instead of the lowest eigen-
our model system, we will not enter into further detail on thismode only helps considerably in reducing the number of
point. geometry steps needed to reach the saddle points. However,

B. Seven atoms free to move
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TABLE lIl. The overall performance of the different walkers for the 21D PEE™ is the maximum on the number of Lanczos iterations &nd is the

Lanczos eigenvalue convergence criteriof™ is the maximum number of dimer rotations afid, is the convergence criterion used for the rotational force.

(fTS) is the average number of force calls needed per saddle point found that is directly connected to the starting minimum. The rest of the nomenclature is
the same as in Table Il. Each set of results is based on 500 searches. There are more than 250 saddle points within 4 eV of the starting minimum and directly
connected to it.

Method Ax™2 (A) Ax™n (A) n's v (f) (78 (s) v
Lanczos(Secs. Il A, Il O, &\, =0.0001 0.1 01 20 497 435.8 10375.9 50.0 1
n™=3 and s\, =1.0 0.1 0.1 42 486 266.8 3175.9 54.2 14
nI™®=3 and s\, =1.0 0.4 0.1 84 344 190.4 11335 38.9 150
nI®=3 and s\ =1.0 0.4 03 94 342 190.7 1014.2 38.9 122
Dimer (Secs. 11 B, 11 Q, 8F5=0.01 eV/A 0.1 0.1 20 497 820.5 20512.4 50.0 1
NI®=1 and sF ,=0.1 eV/A 0.1 0.1 48 484 218.8 2279.4 57.6 14
NI®=1 and 5F ,=0.1 eV/A 0.3 0.1 84 249 164.8 960.9 44.0 221
NI®=2 and sF ,=0.1 eV/A 0.45 0.1 82 335 197.3 1203.3 39.4 157
NI®=1 and sF ,=0.1 eV/A 03 03 95 259 176.8 930.7 46.9 164
RFO (exact, Sec. Il D 01 0.1 17 499 32.8 964.8 32.8 0
05 0.1 17 499 11.4 335.2 114 0
05 0.3 59 470 11.9 100.7 11.9 28
Hybrid RFO (exact, Secs. 11D, Il F 0.1 0.1 32 495 33.6 525.3 33.6 4
05 0.1 40 493 111 139.1 111 7
05 0.3 68 458 12.1 88.6 12.1 50
RFO (Bofill, Sec. Il B 0.1 0.1 6 499 60.6 5047.6 60.6 0
Exact initial H 0.1 0.1 16 497 49.6 1548.8 49.6 1
0.2 0.1 10 500 47.8 2389.5 47.8 0
Exact initial H 0.2 0.1 13 497 36.8 1416.4 36.8 3
Exact initial H 0.2 03 60 402 73.9 616.1 73.9 94
Hybrid RFO (Bofill, Secs. IIE, 11 B 01 0.1 10 500 61.0 3049.9 61.0 0
Exact initial H 0.1 0.1 33 484 50.0 757.4 50.0 16
0.2 0.1 10 492 50.1 2503.2 50.1 8
Exact initial H 0.2 0.1 35 470 39.1 558.1 39.1 28
Exact initial H 0.2 03 65 289 71.9 552.9 71.9 183

the number of saddle points found is smaller than for thehe minimum mode following methods. However, as for the
minimum mode following methods. This can to some extentRFO approach with an exact Hessian, relative few saddle
be improved by employing the hybrid RFO with an exactpoints are found when employing the RFO approach with a
Hessian(note that the hybrid version is just as efficient as theBofill update andAx™@"=0.1 A. But from considering the
traditional RFO approach employing an exact Hessian witraverage number of force calls needed per saddle point found
respect to the average number of force galsn even more that is directly connected to the starting minimum, we see
efficient way of increasing the number of saddle points foundhat in all but one case a considerable improvement can be
is to increase\x"" (the distance with which the initial con- obtained when employing the hybrid version of the approxi-
figuration is randomly displaced away from the startingmate RFO approach instead of the traditional one. Further-
minimum), but the number of saddle points found remainsmore, increasing\x™"to 0.3 A leads to a marked improve-
lower for the RFO approach with an exact Hessian than foment for the traditional RFO approach employing a Bofill
the minimum mode following methods. However, the aver-update, whereas the further improvement is marginal in this
age number of force calls needed per saddle point found tha@se of the hybrid version. From these results we also see
is directly connected to the starting minimum is considerablythat the approximate RFO approaches are better than the
lower than for the minimum mode following methods. minimum mode following methods with respect to average
The RFO approach employing a Bofill update of thenumber of force calls needed per saddle point found that is
Hessian performs very well compared to the minimum modealirectly connected to the starting minimum only in the cases
following methods with respect to the average number ofwhere the searches are started with a good initial Hessian.
force calls needed, as is seen from Table Ill. In the cases The results for the RFO approach employing a Powell
where an exact initial Hessian is used the average number ofpdate are quite similar to those for the Bofill update and
geometry steps needed to reach the saddle points is slighttizerefore not included in Table Ill. When the searches are
smaller than for the minimum mode following methods. If started with a unit matrix the Powell update needs on aver-
the search is started with a unit Hessian matrix the number aige about ten force calls more than the Bofill updéte all
geometry steps needed does increase, but due to the use/of™®). Starting with an exact Hessian matrix the difference
only one force call per step, the RFO approach with a Bofillis smaller, the Powell update needing on average about two
update requires on average considerably less force calls théorce calls more than the Bofill update. This indicates that
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TABLE IV. The overall performance of the different walkers for the 525D PES. The nomenclature is the same as in Tables Il and Ill. Each set of results is
based on 500 searches. There are at least 170 saddle points within 4 eV of the starting minimum and directly connected to it.

Method AX™ (A) AX (A) n's v (f) ) (s) 7
Lanczos(Secs. Il A, 11 Q n"™=3 andd\ =1.0 0.1 0.1 40 365 514.0 6424.8 103.6 132
nTaX=4 ands\ =0.1 0.5 0.1 69 214 378.3 2741.3 73.8 281
n?ax=4 andsh =0.1 0.5 0.3 86 210 372.1 2163.4 72.7 265
Dimer (Secs. 11 B, I1Q nj®=1 and6Fp=0.1 eV/A 0.1 0.1 52 375 405.4 3898.4 105.9 122
np™=1 andsFp=0.1 eV/A 0.3 0.1 60 145 314.4 2620.1 83.0 335
np™=2 andsFp=0.1 eV/A 0.45 0.1 66 196 360.7 2732.8 71.2 291
nga&l andSFp=0.1 eV/A 0.15 0.3 78 276 335.1 2148.3 87.8 222
RFO (exact, Sec. Il D 0.1 0.1 11 492 40.9 1859.1 40.9 0
0.5 0.1 10 488 15.0 750.0 15.0 0
0.5 0.3 45 413 19.1 212.2 19.1 57
Hybrid RFO (exact, Secs. II D, Il 0.1 0.1 18 500 36.3 1008.3 36.3 0
0.5 0.1 51 476 14.9 146.1 14.9 24
0.5 0.3 58 411 17.1 147.4 17.1 87
RFO (Bofill, Sec. Il B 0.1 0.1 6 449 1420.9 118408.3 1420.9 17
Exact initial H 0.1 0.1 5 494 311.3 31130.0 311.3 4
0.2 0.1 16 353 1286.6 40206.3 1286.6 124
Exact initial H 0.2 0.1 10 432 342.6 17130.0 342.6 63
Exact initial H 0.1 0.3 27 474 539.2 9985.2 539.2 20
Hybrid RFO (Bofill, Secs. Il E, II B 0.1 0.1 9 441 1351.1 75005.6 1351.1 44
Exact initial H 0.1 0.1 11 481 282.6 12845.5 282.6 17
0.2 0.1 17 294 1224.3 36008.8 1224.3 154
Exact initial H 0.2 0.1 15 380 291.4 9713.3 291.4 110
Exact initial H 0.1 0.3 30 406 465.2 7753.3 465.2 84

the Bofill updater is better in building an approximate Hes-the starting minimurnieven though the number of unwanted
sian from a poor starting situation than the Powell updaterresults of the searches do increaseor the Lanczos method
whereas they are almost equally good in preserving a goothe lowest average number of force calls per saddle point
approximation to the Hessian for this particular system.  found that is directly connected to the starting minimum is

obtained when restricting the maximum number of Lanczos
C. 175 atoms free to move iterations per geometry step**=4) in conjunction with a

. . . less strict criterion for the Lanczos eigenvalue convergence
We have found more than 170 different saddle points 9 9

- . = ) SN =0.1). As al n in the two pr in ions th
within 4 eV of the starting minimum and directly connected( A O ). As also see . the two preceding sect ons the
two minimum mode following methods are rather similar

to it, belonging to more than 20 different classes describin% .
- . . . oth with respect to the average number of force calls needed
similar transition mechanism. For the same reason as in the

preceding section, we will not enter into further detail on this'© reach the saddle points and _th_e_ ”””.‘t?er of saddle points
point. found directly connected to the initial minimum.

The results of the searches with the Lanczos and dimer _12plé IV shows that the average number of geometry
methods for the 525D PES are given in Table IV. As for theStePs taken to reach a saddle point by the RFO approach

3D and 21D PESs considerable effort went into finding pa_employing an exact Hessian is considerably smaller than for
It is worth noting

rameters giving optimal performandehe parameters used the minimum mode following methods. _
are given in Tables | and IV But, also as in the previous that the increase in the average number of steps taken is

cases, close to optimal performance can be reached witiather small when increasing the dimension of the PES from
standard setting&ee Sec. IV ). Using the dimer method to 21 to 525. This indicates that accurate Hessian information
fully converge the lowest Hessian eigenvalue at each geonfor all degrees of freedom can be used very efficiently by a
etry step is very inefficientresults not shown and even PES walker. Employing the hybrid version of the RFO ap-
though the Lanczos method performs considerably better iRroach with an exact Hessian gives a marked improvement
this respeci(results also not shownthis is a strategy that above the traditional RFO approach with an exact Hessian
should not be followed. Optimal performance for the dimerwith respect to the number of saddle points found, resulting
method is reached by limiting the number of rotations atin less force calls needed per saddle point found that is di-
each geometry stemf™=1 or 2) in combination with a less rectly connected to the starting minimum. Another way of
strict convergence criterion for the rotational forcéFg increasing the efficiency for the traditional RFO approach
=0.1 eV/A). This also results in more saddle points beingwith an exact Hessian in finding as many saddle points as
found and a large decrease in the number of force callpossible is to increas&ax™", whereas in the case of the hy-
needed per saddle point found that is directly connected tbrid version no further gain in efficiency is achieved.
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TABLE V. Parameter choices that will result in an efficient use of the minimum mode following methods. The
parameters which are affecting the efficiency the most are listed first. For the finite difference parameters the
smaller value should be used in conjunction with empirieaklytica) potentials and the larger value when the
force evaluations contain numerical noisee text For small or medium sized systems a maximum of three
Lanczos iterations should be employed, whereas a maximum of four Lanczos iterations is more appropriate for
large systems.

Lanczos ~ AX™(A)  Ax@(R) e S\, o (A) i (B)
0.1-0.5 0.1-0.3 3,4 0.1 0.001, 0.01 0.001, 0.01

Dimer AXM(A)  AxEVA) nmE SFp (eVIA) 8p (A) 86 (rad im (A)
0.1-0.5 0.1-0.3 1 0.1 0.001, 0.01 0.001, 0.01 0.001, 0.01

The RFO approach with a Bofill update started with anwe have developed a set of parameter settings that for most
exact Hessian requires on average less force calls to reachparposes will result in efficient saddle point searching. These
saddle point than the minimum mode following methods forparameters are displayed in Table V, where they have been
Ax™"=0.1 A, but at the same time we see from Table IVlisted in the order of importance with respect to the effi-
that the average number of geometry steps needed is consigiency of the searches.
erably higher. Also, the number of saddle points found is  The easiest parameters to set are the finite difference
low, and the number of force calls needed per saddle poinsarameters §x,, oxp, 86p, and éx,,). Optimization of
found that is directly connected to the starting minimum isthese parameters beyond the values given in Table V will not
much higher than for the minimum mode following methods.result in appreciable changes in the outcome of the searches.
If the searches are started with a unit matrix the RFO aptn our experience search performance varies in the range
proach with an approximate Hessian performs considerably- 109 for the parameter ranges displayed in Table I, and
worse than the minimum mode following methods: Not only only those that have a deeper interest in the methodology of
does it take a lot more force calls to home in on a saddl@nhe |anczos or dimer method might want to explore other
point, the number of force calls needed per saddle pOi”§ettings than given in Table V. When using empiritaha-
found 'Fhat is direct_ly connected_ to the_ starting minimum islytical) potentials, the finite difference distandesigles can
very high. Employing the hybrid version of the RFO ap- pe set to the small value 0.001 (Radian. If the calculated
proach with a Bofill update improves all aspects of theforces contain numerical noise, for example, when employ-
search performance compared to the traditional RFO apyg electronic structure calculation based on density func-
proach with a Bofill update, but the minimum mode methods;jong) theory, the distanceangles should be chosen larger
remain superior with respect to the number of force call§g g1 A (radian]. Note that in the latter case the calculated
needed per saddle point found that is directly connected & rces may have to be converged more accurately than nor-
the starting minimum. Furthermore, increasing™" does mally done for minimizations, because the minimum mode

lower the _nurr_lber of force calls needed per s_a_ddle pO'nfollowing methods calculate curvatures through finite force
found that is directly connected to the starting minimum, bUtdifferences

not enough to compete with the minimum mode methods,
and the advantage above the minimum mode methods wit

respect to the average number of force calls needed is los t the beginning of a search—there is little to be gained by

Thus when the dimension of the system increases the Bofill _ . .
inding the lowest curvature mode very accurately at a point

updater is struggling harder to buildup a reasonable approxi- . .

: . . . In space far from a saddle point. In the convex region around
mation to the Hessian. Even when provided with an excellent ™% . ) L
S . . minima, where all Hessian eigenvalues are positive, the
(in this case exagtstarting Hessian the update formulas are

struggling to keep up with the changes in the Hessian as tr@inimum mode finding iterations should certainly not be

system moves towards the saddle points. highly optimized. Finding the lowest mode accurately in this

For this 525D PES the Powell updater performs consid-region will typically result in a low energy, delocalized

erably worse than the Bofill updater—starting with an exactbr(':""lthiong moder(]whgnl corll_siddering d highf—diméaniiona! sys-
Hessian the Powell updater requires 200—250 more forcIéems)']c r|1|ce sucha he oca '.ﬁe mlo s cl)un ’f.t c mlnlmL:m
calls than the Bofill updater and starting with a unit matrix it mode following methods will rarely be able to find a saddle

requires 350—500 force calls mofeesults not shown here point. It is a far better strategy to ensure that the lowest
Hessian eigenvector is gradually converged towards the low-

est curvature mode as the system is moved from the starting

configuration towards the saddle point. Actually, this gradual
From Secs. Il, IVA, IVB, and IV C it is clear that the convergence is exactly what is accomplished by allowing

number of tunable parameters is larger for the two minimunonly a few Hessian eigenvector optimization iterations per

mode following methods than for tiaybrid) RFO methods. geometry step.

However, in most cases it will not be necessary to perform a  Varying the parameters that control the minimum mode

full optimization with respect to all parameters. Through ouroptimization (", s\, ng®, and §Fp) relative to the pa-

experience with the current systeifimit also other systems rameter values indicated in Table V may further enhance the

The minimum mode following methods are most effi-
ient if the lowest Hessian eigenvector is not fully converged

D. Emerging guidelines for optimal searches
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efficiency of the searches. However, the increased efficiency
beyond that which can be achieved with those parameter
values, may not warrant the extra effort spent in detailed
optimization of these parameters. If such an optimization is
undertaken, one should note that when imposing a maximum
on the number Lanczos iteration§'®, a simultaneous ad-

justment of S\ can serve to reduce the number of actual [

iterations performedwhen the lowest Hessian eigenvalue is A 600 T
converging fast enough to meet this critepiomhe relation i 7
between the maximum number of dimer rotatiof&™ and 400 1= b T

the maximum allowed rotational forcéF is similar. The
actual number of dimer rotations can be reduced if the maxi-
mum rotational force criterion is met before the maximum
number of rotations have been performed. Increasifig’
(n3®) and/or decreasing\ | (SFp), while keeping all other
parameters fixed, will tend to lead to better streambed fol-
lowing and therefore more conservative searches, i.e., often
the lowest lying saddle points will be found.

A proper choice ofAx™® is important for the Lanczos
and dimer methods, as it also is for the RFO approaches. It
can be used to tune the efficiency of the searches in terms of | | | | |
the number of force calls needed and to optimize the variety 0 01 02 03 04 05
of saddle points found. The optimal strategy will be different Maximum step length, Az™> [A]
for different applications. If the lowest saddle point is de-

5 . 4. Results of 500 Lanczos and dimer searches for varying maximum

ir r only a few rch n run f com i X X
sired, or only a few searches can be run because of co putstep lengthsAx™® for the 525D system, employing the parameter settings

limitations, a conservative setting is preferred. If manygiven in Table V.(a) The number of saddle points found within 4 eV of the
saddles are desired and many searches can be run, an aggrgsting minimum and directly connected to (i) The average number of
sive, large value of the maximum step length will be betterforce caIIs_ needed to‘re_ach thefm) The average n_umber of forc_e calls per
This is demonstrated in Fig. 4 by displaying the performancg™:£ Pot fond i & e of e staing minimun and et cor
of 500 Lanczos and dimer searches for varying maximumhnat are not directly connected to the starting minimum.

step lengths for the 525D system, employing the parameter

settings given in Table V. For a small step length, few saddle

points are foundFig. 4@], but most of them are directly influences the outcome of the searches. It is seen from Tables
connected to the starting minimum. As the maximum lengthll and IV that similar considerations apply as fAx™*. If

is increased the searches become more aggressive. Eaghily the lowest saddle point is desired, or the number of
search requires fewer force cdllsig. 4b)], reaching a mini-  searches need to be limited due to computational limitations,
mum of 376.5303.1) at Ax™®=0.45(0.45 A for the Lanc-  a small valueg(0.1 A) is preferred. However, if one attempts
zos (dimen method. At the same time, more saddle pointsto make a map of all relevant saddle points and many
are found so that the number of force calls per saddle poingearches can be run, a larger val0€2—0.3 A will in most
which is directly connected to the starting minimum alsocases be better.

drops, reaching a minimum of 2751(2723.2 at Ax™® It is important that a saddle point search method can be
=0.35 (0.30 A [Fig. 4(c)]. For very aggressive searches run with minimal adjustments of parameters. From the above
with the maximum step length greater than 0(@315 A the  considerations it is clear that for most applications only two
cost per search increasgsig. 4b)] due to a tendency for parameters Ax™*Ax®") need to be considered when em-
some searches to take many iterations at high energy befoptoying the Lanczos or dimer method. These are the same
converging. The number of saddle points found, not neceswo parameters that need to be optimized when employing
sarily directly connected to the starting minimum, increaseshe (hybrid) RFO methods, and one should therefore con-
with increasing maximum step length, reaching 2869 sider the minimum mode following methods as easy in use
out of 500 searches @&x™>=0.5(0.35 A [Fig. 4d)]. This  as the(hybrid) RFO methods. Thus, which method to choose
large range of different saddle points can be valuable foran be decided purely on how well the different methods
some applications, but if one is interested in as many saddlggerform in a given situation.

points which are directly connected to the starting minimum  The results presented above and in the three Secs. IV A,
as possible, a maximum step length of 0830 A is op- IV B, and IV C show that the Lanczos and dimer methods are
timal [Fig. 4(c)]. Note that from a comparison of results from rather similar both with respect to the average number of
Fig. 4 and Table IV, it is seen that little is lost by employing force calls needed to reach the saddle points and the number
the standard settings from Table V as compared to the moref saddle points found directly connected to the initial mini-

Good saddles

</f

15000 |-
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5000 |

< f >/good saddle
Saddles
=L L)
s =S
L L L L I T
;gﬁf
P I I TR T BT ST 1

fully optimized parameters used in Sec. IV C. mum. Also when considering the total computational effort
The parameteAx™" (the distance with which the system they perform similarly, as seen from Fig. 5.
is randomly displaced away from the starting minimuatso For the low-dimensional system there is little difference
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TABLE VI. In the table the preferred method for optimal saddle point searches is indicated for different system
sizes. It depends on whether the force is cheap to calc(gage if the force is obtained analytically from a
simple model potential as in the present ¢aseexpensive to calculate.g., if it is obtained from an electronic
structure calculation at the density functional theory or at higher levEfe preferred method also depends on
whether the goal of the study is to find only the few lowest saddle points or a more complete mapping of all
saddle points is intended. The guidelines are given based on a combination of the considerations presented in
Sec. IV D. The word hybrid within parentheses indicates that both the standard and hybrid versions of the RFO
method could be used. For the 21D and 525D systems, it is essential to used a good estimate of the initial
Hessian for theéhybrid) RFO approach with a Bofill update. Otherwise the minimum mode following methods

will be the preferred choice.

Cheap force Expensive force

System size Lowest saddle points All saddle points Lowest saddle points All saddle points

3D (Hybrid) RFO exact Minimum mode or (Hybrid) RFO Bofill Minimum mode or
(Hybrid) RFO exact (Hybrid) RFO Bofill
21D (Hybrid) RFO exact (Hybrid) RFO exact (Hybrid) RFO Bofill Minimum mode or
(Hybrid) RFO Bofill

525D Minimum mode Minimum mode Minimum mode or  Minimum mode

(Hybrid) RFO Bofill

between the RFO methods using the two approximate Hestart the search with a good initial estimate of the Hessian,
sians, the Bofill and Powell updaters. But when increasingand the cost of the diagonalization will not be dominating,
the dimension of the system the Bofill updater clearly perthe (hybrid) RFO approach with a Bofill updater is to be
forms better than the Powell updater. This holds for searchegreferred above the minimum mode following methods. But
started with an exact initial Hessian as well as with a unitin all other cases the minimum mode following methods
matrix. Therefore the RFO approach with a Bofill updaterclearly represent the better choice. Note that the requirement
will be considered as the representative RFO method with aof starting with a good initial estimate of the Hessian for the
approximate Hessian in the following comparisons. (hybrid) RFO approach might further limit the use of this
In determining the most efficient saddle point searchmethod in the case of high-dimensional systems.
method for the 525D system, a number of considerations Similar considerations can be made for the 21D system.
must be made, and they lead to guidelines for optimal search
methods as summarized in Table VI. When working with a
rather simple model potential where the force can be calcu- ©-© HRFO Bofill, bad initial Hessian
lated cheaply (through analytical derivatives, as in the =~/ HRFO Bofill, good initial Hessian
- 2 &--< HRFO exact
present study the cost of the full diagonalization of the «=--» HRFO exact, Hessian part
Hessian matrix renders thaybrid) RFO approaches far too Aj@]ﬁé}uﬁm
computationally demanding compared to the minimum mode A B
following methods(Fig. 5. However, if calculating the force le+06]-
becomes much more expensive, e.g., when it is obtained
from an electronic structure calculation at the density func-
tional theory or higher levels, the diagonalization may no
longer be the dominant part. But since an increasing cost of
calculating the force also implies that the calculation of the
exact Hessian would become very demanding, (thorid)
RFO approach employing an exact Hessian would still not be
an alternative to the minimum mode following methods. This
argument does not apply to the approximétgbrid) RFO
scheme, where the computational cost will be dominated by :
the force evaluations. From Table IV we see that(thgorid) le+00L
RFO approach with a Bofill update of the approximate Hes- TR Y E
sian starting from an exact initial Hessian locates the saddle System size
points using on average less force calls than the minimum
mode foIIowing methods, and it will therefore be favored FIG. 5. (Color onling The total computational effort is given in CPU-
with respect to the computational effort. However, the table,seconds for the different system sizes. Repr_es_entative results f_or each
L . method are presented farx™@"=0.1 A. For the minimum mode following
also shows that the minimum mode following methods IO'methods the effort is completely dominated by the force calls. For the hybrid
cate appreciably more saddle points and requires considerRro (HRFO) method employing an exact Hessian the computational effort
able less force calls per saddle point found that is direcﬂyjf calculating the Hessian together with the diagonalization of it has been

connected to the starting minimum than t(i'e/brid) RFO indicated separately. Since similar results are found for the RFO methods
employing an approximate Hessian they have not been included in this

apprpach with a Bofill update. Taken together this indicatesigyre. The lines are meant as a guide to the eye. Note the logarithmic scale
that if only the lowest saddle points are sought, and one caon both axes.

8 O ]
| I

le+04f

le+02f

Computational effort [s]
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If the force can be calculated cheaply, we see from Fig. 5 thaable guess for the saddle point can be made and/or that the
the (hybrid) RFO approach using an exact Hessian requiresransition proceeds to a known final state. The number of
the least total computational effort, and the method effi-studies describing methods allowing one to walk from a
ciently locates the lowest saddle points. From Table Ill weminimum to a saddle point without any knowledge of the
also see that this method is the most efficient with respect téinal state are more limited, and, to the best of our knowl-
the number of force calls needed per saddle point found thagdge, a systematic comparison of how such methods perform
is directly connected to the starting minimum. Consideringhas not yet been made. In an effort to improve this situation
the case where the force is expensive to calculate(lfile ~ we have set out to compare some traditional all-mode fol-
brid) RFO approach with an exact Hessian is no longer alowing methods with more recently developed minimum
alternative(see preceding paragraptiowever, the(hybrid) mode following methods.
RFO approach with a Bofill updater requires considerably — As representative examples of the all-mode following
less force calls than the minimum mode following methodsmethods we have investigated the performance of some
and locates the lowest saddle points efficiently. But if themodified Newton-Raphson approaches, the RFO methods
goal is to locate as many saddle points as possible, we sgfioneered by Cerjan and Millerand Simonset al>* using
from Table Il that only in the case of starting the searchesither exact or approximate Hessians. In these methods all
with a good initial Hessian does tiibybrid) RFO approach Hessian eigenvalues and eigenvectors are used together with
with a Bofill updater require less force calls per saddle pointhe gradient vector to calculate the steps leading towards a
found than the minimum mode methods. The guidelines fosaddle point. A comparison is made between the different
optimal search methods for the 21D system are summarizegersions of the all-mode following methods and also with
in Table VI. two minimum mode following approaches, the Lanczos and
From Fig. 5 we see that thiéaybrid) RFO approach us- dimer methods, where only the lowest eigenvalue and eigen-
ing an exact Hessian requires the least total computationglector are used in conjunction with the gradient vector to
effort for the 3D system when the force is cheap to calculategetermine the steps. We have also tested the performance of
and this will therefore be the preferred method if the lowesthyprid versions of the RFO approaches in which the geom-
saddle points are sought. But even if all methods are able tgtry steps are determined as in the minimum mode following
locate all five saddle points, Fig. 3 indicates that the Lanczoghethods in the convex regions of the P@ere all Hessian
method finds the most difficult to locate saddle pOint moreeigenva|ues are pos”n),and as in the traditiona' RFO meth_
often than thethybrid) RFO approach with an exact Hessian, ods outside these regions. The PES walkers have been tested
suggesting that less searches employing the Lanczos methgf 3 model system involving transitions in a seven-atom Pt
would be needed as compared to thgbrid) RFO approach jsjand on a Rfl11) surface using a simple Morse pairwise
with an exact Hessian when attempting to locate as manjotential function. Three different model system sizes have
saddle points as pos_sible. Taking this intq account, the Langseen considered—the full system with 175 moving atoms
zos method andhybrid) RFO approach with an exact Hes- anq two reduced size systems. The PES governing the tran-
sian would perform almost equally well. For cases where thetions for the largest system is a 525D one, the reduced size
force is expensive to calculate thipybrid) RFO approach systems are of 21D and 3D, respectively.
using an exact Hessian would become too computationally” | terms of the average number of force calls needed to
demanding compared to the other methésise above But  oach the different saddle points the RFO approach employ-
from Table Il we see that thenybrid) RFO approach with a g an exact Hessian is clearly better than the RFO ap-
Bofill update requires considerably less force calls to readﬂ)roaches employing an approximate Hessian or the mini-
the saddle points than the minimum mode methods, making,,m mode following methods. However, due to the cost of
it the preferred method when seeking to locate the lowestycyjating the exact Hessian and the cost of performing a
saddle points. As in the case where the force is cheap W, giagonalization of it, the total computational effort is in
calculate, the different efficiencies in finding the most diffi- ., )<t cases unfavorable compared to the other methods. Only
cult to locate saddle point render the performance of thg nen the Hessian matrix can be calculated cheaply and the
(hybrid) RFO ap_pr(_)ach with a Bofill upda_te gnd the Lan_czosdiagonalization of it does not dominate the overall effort, the
method rather similar. In Table VI the guidelines for optimal RFO approach employing an exact Hessian is the most effi-
search methods for the 3D system are summarized. cient of the methods we have tested. This is the case for
. In closmg this section, we yvould !|ke to stregs that agmall (3D) and medium(21D) sized systems where, e.g., a
different maximum step length is required for optimal per'simple model potential like the one used here is employed
formance of the different methods. and the Hessian matrix can be obtained analytically without
much effort. Our results also show that the traditional RFO
V. CONCLUSIONS approach employing an exact Hessian mainly finds the low-
Being able to locate saddle points on PESs is a prerecest saddle points, but this behavior can be improved consid-
uisite to the study of transitions when working within the erably by starting the search further away from the starting
harmonic approximation to transition state thedwhether minimum or by employing the hybrid version introduced
used explicitly or implicitly. It is therefore not surprising here.
that there has been a large number of studies in which dif- With respect to the average number of force calls the
ferent saddle point search methods have been developed BFO searches based on a Bofill update of the approximate
refined. However, in many cases it is assumed that a reasohlessian also perform better than the minimum mode follow-
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