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Within the harmonic approximation to transition state theory, the biggest challenge involved in
finding the mechanism or rate of transitions is the location of the relevant saddle points on the
multidimensional potential energy surface. The saddle point search is particularly challenging when
the final state of the transition is not specified. In this article we report on a comparison of several
methods for locating saddle points under these conditions and compare, in particular, the
well-established rational function optimization~RFO! methods using either exact or approximate
Hessians with the more recently proposed minimum mode following methods where only the
minimum eigenvalue mode is found, either by the dimer or the Lanczos method. A test problem
involving transitions in a seven-atom Pt island on a Pt~111! surface using a simple Morse pairwise
potential function is used and the number of degrees of freedom varied by varying the number of
movable atoms. In the full system, 175 atoms can move so 525 degrees of freedom need to be
optimized to find the saddle points. For testing purposes, we have also restricted the number of
movable atoms to 7 and 1. Our results indicate that if attempting to make a map of all relevant
saddle points for a large system~as would be necessary when simulating the long time scale
evolution of a thermal system! the minimum mode following methods are preferred. The minimum
mode following methods are also more efficient when searching for the lowest saddle points in a
large system, and if the force can be obtained cheaply. However, if only the lowest saddle points are
sought and the calculation of the force is expensive but a good approximation for the Hessian at the
starting position of the search can be obtained at low cost, then the RFO approaches employing an
approximate Hessian represent the preferred choice. For small and medium sized systems where the
force is expensive to calculate, the RFO approaches employing an approximate Hessian is also the
more efficient, but when the force and Hessian can be obtained cheaply and only the lowest saddle
points are sought the RFO approach using an exact Hessian is the better choice. These conclusions
have been reached based on a comparison of the total computational effort needed to find the saddle
points and the number of saddle points found for each of the methods. The RFO methods do not
perform very well with respect to the latter aspect, but starting the searches further away from the
initial minimum or using the hybrid RFO version presented here improves this behavior
considerably in most cases. ©2004 American Institute of Physics.@DOI: 10.1063/1.1809574#

I. INTRODUCTION

Within the harmonic approximation to transition state
theory ~whether used explicitly or implicitly!, finding the
mechanism or rate of transition for a chemical reaction or for
the diffusion of one or more atoms on a surface or in a bulk
system, requires the location of saddle points on the potential
energy surface~PES! governing the transition. In these cases
the transition rates are largely determined by the region
around the saddle points and their energy difference with the
starting minimum. It is therefore not surprising that a large

number of studies have focused on developing or refining
methods for locating saddle points on PESs~see, e.g., Refs.
1–27 or references found in the reviews Refs. 28 and 29!.
However, in many of these methods it is assumed that a
reasonable guess for the saddle point can be made and/or that
the reaction proceeds to a known final state. If one is looking
for saddle points describing yet to be discovered reaction
mechanisms or one would like to map out as many saddle
points as possible irrespectively of the final states, these
methods will not suffice.

An illustration of the importance of having methods that
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can be used to systematically walk from a given minimum
towards saddle points, without assuming any knowledge of
the final states, is the discovery by Feibelman in 1990 that an
Al atom does not diffuse on the Al~100! surface by repeated
hops from one site to another, as had been previously as-
sumed, but rather by a concerted displacement of two
atoms.30 In chemistry, there are many reactions where the
mechanism and reaction intermediates are unknown, which
could in principle be tackled using transition state theory.
Examples include the photo-oxidation of water on TiO2 ,31,32

which is relevant in the clean production of hydrogen, the
conversion of NaAlH4 to Na3AlH6 ,33 which is relevant to
hydrogen storage, and several reactions important to
biochemistry.34–39 The number of methods currently avail-
able allowing one to walk from a minimum to a saddle point
without any knowledge of the final state are limited, and, to
the best of our knowledge, a systematic comparison of such
methods has not been reported. The goal of the present study
is to provide such a comparison.

Many of the traditional methods used within the chem-
istry community that are able to start from a minimum and
converge on a saddle point without using any knowledge of
the final state are variations on the pioneering efforts of Cer-
jan and Miller1 and Simonset al.3,5 We have investigated the
performance of some of these modified Newton-Raphson ap-
proaches~we will refer to them as all-mode following meth-
ods!, which are the rational function optimization methods
using either exact or approximate Hessians~the second de-
rivative matrix of the potential energy with respect to the
nuclear coordinates!. More recently, a different approach has
been proposed where only the minimum eigenvalue mode is
required. Rather than constructing the full Hessian matrix
and diagonalizing it, only the minimum mode is found. In
this study we will focus on two representatives of what we
will refer to as minimum mode following methods, the
dimer17 and Lanczos methods.19 Other methods could also be
investigated, such as various preconditioners24,40or modified
eigenvector following methods,16 but our intention is to pro-
vide a comparison between two main classes of saddle point
search methods and this goal can be reached by considering
representative members of each class. An important factor in
determining which method is the more successful is the num-
ber of force evaluations and geometry steps needed to reach
the saddle points. Also the ability of the methods to discover
as many saddle points as possible might play an important
role. The computational effort per relevant saddle point
found will eventually decide which method will be the pre-
ferred one. In this study all these aspects will be discussed
and the results might serve as a basis for further method-
ological improvements.

All our tests have been performed on a model system
involving transitions in a seven-atom Pt island on a Pt~111!
surface using a simple Morse pairwise potential function.
This test system was previously used to study the efficiency
of various methods which rely on knowledge of both the
initial and final state.28 A relatively simple model system is
chosen in these studies to make it easy for others to repro-
duce the results, apply other methods to the same system,
and to allow for a rather extensive study including three dif-

ferent system sizes. In the full system, 175 atoms can move
so 525 degrees of freedom need to be optimized to find the
saddle points. In the medium sized system, only the seven
atoms of the island are free to move~21 degrees of freedom!.
In the small system, only one of these seven atoms can move
~three degrees of freedom!. Even though the model interac-
tions are of a simple Morse form, the resulting PESs describe
a wide variety of realistic transition mechanisms and provide
challenging tasks for the PES walkers.

The outline of the paper is the following: In Sec. II the
different methods considered are described. This is followed
by a short description of the model PESs in Sec. III and the
results and a detailed discussion of them are given in Sec. IV.
Conclusions are presented in Sec. V.

II. THE POTENTIAL ENERGY SURFACE WALKERS

All methods described below rely on a local approxima-
tion to the PES using information about the gradientg and
the exact or approximated Hessian matrixH at the current
configuration of the system,xl . Using all or parts of the
available information a step vector,Dxl , is calculated and
the system moved to a new configurationxl 115xl1Dxl .
The series of geometry iterations is in our case started close
to a local minimum of the PES,x1 , and continued until all
components of the gradient vector fall below a given thresh-
old, dgmax. From a set of initial starting configurations the
goal is to locate as many of the saddle points directly con-
nected to the minimum as possible.

The methods we consider can be separated in two main
classes.

~i! In the minimum mode following methods only the
lowest eigenvalue and the corresponding eigenvector of the
Hessian are sought and subsequently used together with the
gradient to determine the step vector. Either the Lanczos it-
erative method~Sec. II A! or the dimer method~Sec. II B!
can be used to find the minimum mode. In the form they are
presented here they use exactly the same way of calculating
the step vector~Sec. II C!, the only difference lies in how the
lowest Hessian eigenvalue and the corresponding eigenvec-
tor are obtained.

~ii ! In the all-mode following methods the full Hessian
matrix is calculated or approximated, and all eigenvalues and
eigenvectors are used in conjunction with the gradient to
determine the step vector. Here we have used a rational func-
tion optimization approach as an example of an all-mode
following method. Two versions, one using the exact Hessian
~Sec. II D! and the other using approximate Hessians~Sec.
II E!, are outlined below. We also investigate the behavior of
a hybrid method~Sec. II F!.

A. A Lanczos iterative method for finding the
minimum mode

The activation-relaxation technique nouveau~ARTn!
employed in Ref. 19 was the first saddle point search method
that used a Lanczos iterative approach for calculating the
lowest eigenvalue of the Hessian matrix. In this method the
system is moved stepwise from a local minimum along a
random direction until a negative Hessian eigenvalue is en-
countered. For each step the total energy of the configuration
is minimized in the hyperplane perpendicular to the step di-
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rection. Once a negative eigenvalue has been found, the sys-
tem is pushed against the force along the eigenvector of the
Hessian corresponding to the negative eigenvalue, while
minimizing the force in all other directions. Unless the low-
est eigenvalue turns positive, this procedure ensures conver-
gence to a first-order saddle point, and as such it is an im-
provement of the earlier version of the activation-relaxation
technique presented in Refs. 11 and 15.

Two methods similar in spirit to ARTn were previously
introduced by Munro and Wales.16

~i! In one approach a shifted power iteration scheme16,41

is used to find the eigenvector corresponding to the lowest
eigenvalue of the Hessian matrix. A step uphill along the
eigenvector corresponding to the lowest eigenvalue is then
taken, while a conjugate gradient method is used to minimize
the total energy in all other directions. Although the method
only uses information about the eigenvector corresponding to
the lowest eigenvalue, the full Hessian matrix needs to be
constructed in each step. But what has been gained is that
there is no longer a need for a full diagonalization of the
Hessian matrix, an operation that can become prohibitive for
large systems.

~ii ! The second approach relies on a variational tech-
nique where the Rayleigh-Ritz ratio16,41 is minimized
through a conjugated gradient method. In this way the lowest
eigenvalue and the corresponding eigenvector can be ob-
tained without having to build the full Hessian matrix. The
obtained information is then used in the same way as in the
first approach to step towards a saddle point.

In Ref. 24 the Davidson method40 was used to efficiently
characterize the stationary points on a PES by computing the
lowest eigenvalue of the Hessian matrix. Although the
method was only used to determine whether a stationary
point was a local minimum or a saddle point, it was sug-
gested that the method could be used in conjunction with
eigenvector-following methods as an efficient way of opti-
mizing transition states. As such it could be another member
of the class we refer to as minimum mode following
methods.

In the following we will describe in some detail how one
of the schemes used here, the Lanczos scheme, can be used
to calculate the minimum mode. The Hessian matrix is real
and symmetric and can therefore be reduced to a tridiagonal
form by an orthogonal similarity transformation,T5QtHQ
(t denotes the transpose!.42 After obtaining the eigenvalue
and eigenvector pairs,$l i ,vi

T% i 51,...,n of T, the similarity en-
sures that the eigenpairs ofH are given by $l i ,vi

5Qvi
T% i 51,...,n ~the superscriptT is used to indicate that the

eigenvector is obtained from the tridiagonal matrixT!. If, as
in our case, one is interested in the lowest eigenpair only,
$l1 ,v1%, a Lanczos scheme can be used to construct a set of
tridiagonal matrices,$T2 ,...,T j%, whose lowest eigenvalue
will converge tol1 as j increases.41,43,44The advantages of
the Lanczos scheme are that it~i! replaces the diagonaliza-
tion of then3n Hessian matrix by the diagonalization of a
tridiagonal matrixT j , where j !n whenn is large, and~ii !
requiresH to be known only in a small,j -dimensional basis
of the Lanczos vectors in whichH is tridiagonal, rather than
in ann-dimensional basis of a given set of primitive vectors.

The tridiagonal matrices are constructed according to41,43,44

T j5F a1 b1

b1 a2 b2

b2 a3 �

� � b j 21

b j 21 a j

G , ~1!

whereak51,...,j and bk51,...,j 21 are obtained through an it-
erative procedure. Beginning with a vectorr0 ~if it is the first
geometry iteration a random nonzero vector is chosen, oth-
erwise the eigenvector found in the previous geometry cycle
is used! and settingb05ir0i andq050 the following steps
are repeated (k51,...,j ):

qk5
r k21

bk21
, ~2!

uk5Hqk , ~3!

r k5uk2bk21qk21 , ~4!

ak5qk
t r k , ~5!

r k5r k2akqk , ~6!

bk5ir ki . ~7!

For each new set$ak ,bk21% the lowest eigenvaluel1
Tk of Tk

is found. Once

Ul1
Tk2l1

Tk21

l1
Tk21 U,dlL ~8!

the eigenvalue is considered converged tol15l1
Tk5 j . The

choice ofdlL will be discussed later. We also consider the
possibility of terminating the iteration cycles afternL

max itera-
tions. If the full Hessian is not known in a given basis of
primitive vectors, the second step in the iteration cycle above
@Eq. ~3!# can be replaced by the finite difference approxima-
tion

uk5
g~xk!2g~xl !

dxL
, ~9!

with

xk5xl1dxLqk , ~10!

wherexl is the current configuration of the system andg the
gradient at the configuration indicated. The choice ofdxL

will be discussed later. As can be seen from Eqs.~9! and
~10!, the second derivative of the potential energy only needs
to be calculated along the Lanczos vectors. Note that the
iteration formulas, Eqs.~2! through ~7!, do not contain a
reorthogonalization step.41,43,44In the cases we have consid-
ered here the convergence is fast enough to ensure that the
orthogonality of the Lanczos vectors,$q1 ,...,qj%, is not lost.

The eigenvalues of the matricesTk51,...,j can be ob-
tained efficiently using a standard QL algorithm with implicit
shifts.42 Once the lowest eigenvalue is considered converged
to l15l1

T j , the corresponding eigenvectorv1
T j , can be found
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by inverse iteration. To be able to use the very efficient
Cholesky factorization scheme42 the eigenvalue spectrum of
T j is shifted so that all eigenvalues are positive. Furthermore,
to ensure fast convergence of the inverse iteration, the lowest
eigenvalue is set to a small positive numberlsmall

T j ~we have

usedlsmall
T j 51024 eV/Å2). Finally, since the set of orthonor-

mal Lanczos vectors$q1 ,...,qj% form the column vectors of
the matrix Q, the eigenvector corresponding to the lowest
eigenvaluel1 of H can be obtained throughv15Qv1

T j ~note

that Q is of dimensionn3 j , andv1
T j of dimensionj 31).

From the outline of the Lanczos method given above and
the method used to calculate the geometry step~Sec. II C!, it
is clear that there are many parameters available for tuning to
reach optimal performance. However, very good perfor-
mance can be reached by adopting ‘‘standard’’ settings. This
will be discussed in more detail in Sec. IV.

B. The dimer method for finding the minimum mode

Since a full presentation of the dimer method was given
in Ref. 17 we will only review the important aspects of the
method here together with some modifications. The dimer,
consisting of two auxiliary configurations~images! of the
system, is defined by

xl
15xl1dxDN̂, ~11!

xl
25xl2dxDN̂, ~12!

wherexl is the current configuration of the system anddxD

determines the displacement of the two images along a unit
vector N̂ ~in the first geometry iteration a random nonzero
unit vector is chosen forN̂, while for the following geometry
iterations the lowest Hessian eigenvector found in the previ-
ous cycle is used. The choice ofdxD will be discussed later!.
Next, the dimer energy is defined as the sum of the energies
for the two images,VD5V11V2 . The essential feature of
the method is that whenVD is minimized under the con-
straint of fixed xl and dxD , i.e., a rotation of the dimer
around the midpoint, the dimer will align itself along the
eigenvector of the Hessian matrix corresponding to the low-
est eigenvalue.

The following set of iterative operations will accomplish
this: First, the forcesFl52g(xl) and F152g(xl

1) are cal-
culated, and then used to approximate the force at the second
image throughF252Fl2F1 . Next, the scaled rotational
force acting on the dimer is obtained byF'5(F1

'

2F2
')/dxD , whereFi

'[Fi2(Fi•N̂) N̂ for i 51,2. A second
unit vector~normal to the first by construction! is defined as
Q̂5F'/iF'i , and subsequentlyN̂ andQ̂ are rotated through
an angleduD within the plane spanned by the two unit vec-
tors, giving two new orthonormal vectorsN̂* andQ̂* . Then
a second dimer is formed

xl
1* 5xl1dxDN̂* , ~13!

xl
2* 5xl2dxDN̂* , ~14!

and the forcesF1* 52g(xl
1* ), F2* 52Fl2F1* , and F*'

5(F1*
' 2F2*

' )/dxD calculated. In the following step the

magnitude of the rotational force atduD/2 is found through
F5(F*'

•Q̂* 1F'
•Q̂)/2 and a finite difference approxima-

tion to the change in the rotational force~at duD/2) is ob-
tained by

F85
F*'

•Q̂* 2F'
•Q̂

duD
. ~15!

Subsequently, the angle with which theseconddimer now
has to be rotated to minimize the dimer energy is given by17

Du52
1

2
arctanS 2F

F8 D2duD/2. ~16!

Finally, if the rotational curvatureF8 is negative the rotation
by Du will move the dimer towards a~local! maximum for
the dimer energy. In this case addingp/2 to Du ensures that
the rotation is towards the minimum. Note that the term
duD/2 in Eq. ~16! is appropriate since the rotational curva-
ture is estimated most accurately by Eq.~15! for the mid-
point of the two dimers, using central differencing.

If the dimer method is used to fully converge the lowest
eigenmode the procedure can be summarized as follows:~i!
The rotational force on the first dimer is calculated. If it is
below our chosen convergence criterion,F,dFD , the eigen-
vector corresponding to the lowest eigenvalue is considered
converged tov15N̂ and the eigenvalue calculated froml1

5@(F22F1)•N̂#/2dxD . ~ii ! If the rotational force is not be-
low the chosen criterion, the rotational force is obtained for
the second dimer, the angle with which the second dimer
needs to be rotated is calculated using Eq.~16!, and the sec-
ond dimer is rotated accordingly. The procedure is repeated
until the convergence criterion in~i! is met. Note that for
each rotation of the dimer, two force evaluations are needed.

The given procedure can be used to fully converge the
lowest eigenmode, but as we will see in the following the
dimer method needs considerably more force calls to reach
convergence than the Lanczos method using this approach.
However, by limiting the number of dimer rotations in com-
bination with a less strict convergence criterion for the rota-
tional force, the number of force evaluations can be drasti-
cally reduced. We do this by adding to the scheme outline
above: ~iii ! If we have reached the maximum number of
allowed dimer rotationsnD

max the eigenvector is then approxi-
mated by the normalized vector along the rotated dimer. Oth-
erwise we repeat the procedure starting from~i!. The eigen-
value corresponding to the obtained eigenvector is calculated
differently depending on in which step the iteration cycle is
stopped: If the criterion in~i! is met the eigenvalue can be
obtained as in the paragraph above,l15@(F22F1)
•N̂#/2dxD . However, if the iteration cycle is terminated at
step ~iii !, a bit more effort is needed. This is because we
would like to avoid performing an extra force evaluation to
get a reasonably accurate estimate of the eigenvalue@note
that after the rotation of the dimer in step~ii ! we have no
direct information about the forces on the rotated dimer#.
First, a curvature estimate alongN̂* is obtained throughC
5@(F2* 2F1* )•N̂* #/2dxD . Then, using the local quadratic
approximation as indicated in Ref. 17, the obtained curvature
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estimate can be corrected to give a reasonable estimate for
the curvature~eigenvalue! along the rotated dimer through

l15C2 1
2 iF*'i tan~Du2duD/2!. ~17!

It is important to note that using a modified conjugated
gradient approach to determine the rotational plane~as de-
scribed in Ref. 17! improves the performance of the method,
especially for large systems. The improvement the conju-
gated gradient method offers compared to the steepest decent
method is due to the former using the force at previous it-
erations in addition to the force at the current iteration to
determine the optimal direction of minimization.42

The above outline indicates that there are many param-
eters which can be adjusted when using the dimer method.
However, in practice there are simple strategies which can be
used to restrict the parameter space. This will be discussed in
more detail in Sec. IV.

C. Determining the geometry step using the minimum
mode only

Compared to the effort needed to obtain the lowest
eigenpair of the Hessian, calculating the step vector for the
minimum mode following methods is relatively straightfor-
ward. As noted in Ref. 17, the force at the current configu-
ration will tend to pull the system towards the minimum, but
simply inverting the component of the force along the lowest
eigenmode will tend to move the system towards a saddle
point on the PES. Another useful trick is to force the system
to move only along the lowest~approximate! eigenmode in
convex regions of the PES, resulting in the system leaving
the convex region faster. Both strategies can be combined by
using a modified force to determine the direction of the step
vector as follows:

F†5H 2~Fl•v1!v1 if l1.0

Fl22~Fl•v1!v1 if l1,0
, ~18!

wherel1 is the lowest eigenvalue andv1 the corresponding
normalized eigenvector of the Hessian at the current position
xl . Next, the length of the step should be determined. Our
approach is to do a line search along the direction of the
modified force by evaluating the force atxl* 5xl1dxlmN†,
with N†5F†/iF†i ~the choice ofdxlm will be discussed
later!. Equation~18! is then used to calculate the modified
force atxl* and the magnitude of the force and the curvature
along the direction of displacement at (xl* 1xl)/2 are given
by F5(F* †1F†)•N†/2 andClm5(F* †2F†)•N†/dxlm , re-
spectively. Finally, the step vector can be calculated from
Dxl5(2F/Clm1dxlm/2)N†. To avoid stepping too far the
step length is not allowed to exceedDxmax ~to be discussed
later!, and to ensure that we are leaving the convex region as
fast as possible the step length is alwaysDxmax in this region.
A conjugated gradient approach to determine the direction of
the step vector is used to reduce the number of force calls
needed to reach a saddle point.

D. Rational function optimization: Exact Hessian

Based on a Taylor expansion of the PES around a current
position and a constraint on the step length, Cerjan and

Miller showed ~through the use of a Lagrangian multiplier
technique!1 that a modified Newton-Raphson approach could
be turned into an efficient PES walker. With steps deter-
mined by

Dxi52
gi

l i2g
, ~19!

whereDxi andgi are the components of the step and gradi-
ent vectors, respectively, in the Hessian eigenvector basis
(Dx5( i 51

n Dxivi , g5( i 51
n givi , vi being the Hessian eigen-

vectors, andl i the Hessian eigenvalues!, they outlined how
g could be chosen in order to walk efficiently from close to
a minimum to a saddle point. In Ref. 3 a more detailed
account on how to choose the optimalg was given~leading
to somewhat different recommendations than in Ref. 1!. An
important element of the strategy is that, ifl1.0, g can be
chosen in such a way as to ensure an uphill walk alongv1

and a downhill walk in all other directions. Then, in Ref. 5 it
was shown how Eq.~19! can be obtained when a rational
function optimization~RFO! approach is used to approxi-
mate the PES locally by

V~xl 11!2V~xl !5
gt
•Dxl1

1
2 Dxl

t
•H•Dxl

11Dxl
t
•S•Dxl

~20!

and choosingS5g1. Here we have chosen to work with the
slightly more general form ofS ~also introduced in Ref. 5!
where the components of the step vector are calculated
through

Dxi52
gi

l i2g i
, ~21!

with l i2g i given by

l i2g i5
1
2 di~ ul i u1Al i

214gi
2!,

d1521, di51 for i 5$2,...,n%. ~22!

This defines a walker that will move uphill along the lowest
eigenmode of the Hessian and downhill along all other
modes. The particular choice for the rescaling of the Hessian
eigenvalues has been motivated by the considerations in
Refs. 5 and 6. We also ensure that the total length of the step
vectoriDxl i5i( i 51

n Dxivi i does not exceedDxmax. Standard
LAPACK ~Ref. 45! routines for real symmetric matrices
have been used to calculate all eigenvalues and correspond-
ing eigenvectors.

E. Rational function optimization: Approximate
Hessian

As already noted in Ref. 3 there is nothing in the proce-
dure described above~Sec. II D! that requires the Hessian
matrix to be exact—it can equally well be applied using an
approximate Hessian. We have used two different updating
schemes

H l 115H l1DH l , ~23!

one due to Powell46 and the other to Bofill.10 The Powell
update is given by
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DH l
Powell

5
~Dgl 112H l•Dxl !•Dxl

t1Dxl•~Dgl 112H l•Dxl !
t

Dxl
t
•Dxl

2~Dgl 112H l•Dxl !
t
•Dxl

Dxl•Dxl
t

~Dxl
t
•Dxl !

2 ~24!

with Dgl 115g(xl 11)2g(xl), and the Bofill update by

DH l
Bofill5fBofillDH l

SR11~12fBofill !DH l
Powell, ~25!

whereDH l
SR1 is a symmetric rank one update47

DH l
SR15

~Dgl 112H l•Dxl !•~Dgl 112H l•Dxl !
t

~Dgl 112H l•Dxl !
t
•Dxl

, ~26!

and the Bofill factor is given by

fBofill5
@~Dgl 112H l•Dxl !

t
•Dxl #

2

@~Dgl 112H l•Dxl !
t
•~Dgl 112H l•Dxl !#~Dxl

t
•Dxl !

.

~27!

F. Rational function optimization combined
with a minimum mode following method:
A new hybrid approach

The RFO approaches~with an exact or approximate Hes-
sian! can in some cases encounter problems with leaving the
convex region. Also, by construction, they will tend to climb
out of the convex region by following the lowest streambed.
When trying to discover all saddle points around a minimum
this tendency can become a weakness compared to the mini-
mum mode following methods. Based on our experience
with the minimum mode following methods we propose a
new hybrid RFO approach which partly remedies this prob-
lem: In the convex region the step vector can be determined
as in Sec. II C using only the lowest eigenvalue and the cor-
responding eigenvector of the Hessian. Thus the hybrid PES
walker is a minimum mode following method when the sys-
tem is located in a convex region of the PES~although the
Hessian matrix is updated for each step when using approxi-
mate Hessians!. Once the lowest eigenvalue of the Hessian
becomes negative the traditional RFO approach as described
above is used. This approach is similar in spirit to the two
methods introduced by Munro and Wales16 and the ARTn.19

The main difference is that no optimization in the hyperplane
perpendicular to the step direction is performed in the con-
vex region, and the full Hessian matrix is constructed and
diagonalized in each step. The method will therefore suffer
from the same computational bottleneck as the traditional
RFO methods with respect to the diagonalization of the Hes-
sian matrix for large systems, but it will in most of the cases
we have considered lead to appreciably more saddle points
found.

III. MODEL SYSTEMS AND POTENTIAL ENERGY
SURFACES

As in Ref. 28, all the PES walkers have been tested on a
model system involving transitions in a seven-atom Pt island
on a Pt~111! surface. The pairwise interaction between the
atoms is given by the Morse potential

V~r !5De~e22a(r 2r 0)22e2a(r 2r 0)! ~28!

with parameters chosen to reproduce diffusion barriers on Pt
surfaces,48 De50.7102 eV, a51.6047 Å21, r 0

52.8970 Å. The potential is cut and shifted at 9.5 Å. The
surface is represented by a six layer slab where each layer
contains 56 independent atoms and periodic boundary con-
ditions have been applied.

In order to study how the walkers perform on PESs of
different dimensionality, the number of atoms allowed to
move have been varied.

~i! In the full system the seven-atom island and the top
three layers of the slab are free to move, the bottom three
layers being kept frozen. There are 175 atoms free to move,
thus the PES is 525-dimensional~525D!.

~ii ! In a reduced size system only the seven-atom island
atoms are allowed to move, whereas all atoms in the under-
lying slab are kept frozen. This represents a 21D PES.

~iii ! In the second reduced size system only one edge
atom of the seven-atom island is free to move whereas all
other atoms are kept frozen, giving rise to a 3D PES.

In all cases 500 initial configurations have been deter-
mined by displacing randomly the atoms of the seven-atom
island that are free to move a distanceDxran. The searches
are stopped when all components of the gradient vector falls
below the thresholddgmax50.001 eV/Å. In the following
section the results are presented in the order of increasing
dimensionality of the system, before some overall trends are
outlined.

IV. RESULTS AND DISCUSSION

A. One atom free to move

A contour plot of the 2D PES obtained by minimizing
the potential energy along the coordinate for motion normal
to the surface for each lateral position of the edge atom that
is free to move is shown in Fig. 1. There are five saddle
points within 4 eV of the starting minimum that are directly
connected to this minimum~given by all atoms in the seven-
atom island being located in neighboring fcc sites, see Fig.
2!. Two of the saddle points~at 1.693 and 1.978 eV above
the minimum! are found when the atom is moving around
the island keeping as close to the neighboring edge atoms as
possible. A third saddle point~2.134 eV! is found when the
atom is moving away from the six other island atoms. The
fourth and fifth saddle points~3.665 and 3.667 eV! are found
when moving the atom on top of the island.

The Lanczos results were obtained with settings shown
in Tables I and II, together with the parameter ranges tested
and found to give similar results. As seen from the tables and
Secs. II A and II C, there are a number of parameters avail-
able for tuning. In this study we have made an effort to reach
optimal search performance, and this has lead to some rec-
ommendations towards standard parameter settings that
could be adopted by others. This will be discussed in more
detail in Sec. IV D. The search results for the Lanczos
method are given in Table II and we see that on average
about five force calls per geometry step are needed to reach
the saddle points: one is used to calculate the gradient at the
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current position, three are used to converge to the lowest
Hessian eigenvalue, and the last one is used in the line mini-
mization. We note that when using a maximum step length of
0.1 Å the third saddle point listed in Fig. 2 is not found
within the 500 searches performed. This can be understood
from looking at Fig. 1: When using a short maximum step
length and a fully converged lowest eigenmode~this can be
obtained withdlL50.01 or lower!, getting into the region
which would allow for a convergence on the third saddle
point is rather difficult. Using a longer maximum step length
solves this problem.

The results for the dimer method were obtained with the
settings given in Tables I and II. Parameter ranges tested and
found to give similar results are also indicated. As for the
Lanczos method, there are a number of parameters that can

be tuned to reach optimal performance, and that has been
done here. This has lead to some recommendations towards
standard settings for others to use~see Sec. IV D!. The dimer
results are given in Table II and it is seen that the short
maximum step length of 0.1 Å results in the third saddle
point not being found, if the dimer method is used in the
mode that the dimer is rotated until the lowest eigenmode is
fully converged ~the maximum rotational force allowed
needs to be set todFD50.01 eV/Å or lower to reach con-
vergence!. That this behavior is the same as for the Lanczos
method is to be expected on the basis that the Lanczos and
dimer methods use exactly the same algorithm for calculat-
ing the geometry step. The only difference between the two
methods is how many force calls are needed to reach a con-
verged lowest eigenmode. From Table II we see that when
the dimer is allowed to rotate until the lowest Hessian eigen-
value is fully converged on average about 6.8 force evalua-
tions per geometry step are needed. However, by allowing a
maximum of only one dimer rotation per geometry step in
combination with a less strict convergence criterion for the
rotational force (dFD51.0 eV/Å), theaverage number of
force calls needed is considerably reduced. With these search
parameters the dimer method is somewhat more efficient
than the Lanczos method with respect to the average number
of force calls needed, and all the five saddle points are found.
This is the way the dimer method should be employed—
using the dimer method to fully converge the lowest Hessian
eigenvalue is not a good strategy, as is demonstrated by the
results in Table II. For the longer maximum step length
Dxmax50.5 Å good performance was reached with a maxi-
mum of one or two dimer rotation anddFD51.0 eV/Å. As
for the shorter maximum step length the dimer method is
somewhat more efficient than the Lanczos method with re-
spect to the average number of force calls needed.

The results of the RFO approach using the Bofill and
Powell updaters are very similar, and therefore only the Bo-
fill results have been included in Table II. They show that
there is a significant decrease in the average number of force
evaluations needed to find the saddle points when increasing
the maximum step length from 0.1 to 0.2 Å. It is also seen
that increasing the step length beyond 0.2 Å leads to addi-
tional reduction in the number of force calls, but at the same
time a rather large number of unwanted search results is
produced. Somewhat surprisingly, it does not matter very
much whether the RFO search using an approximate~up-
dated! Hessian is started with an exact initial Hessian or a
unit matrix.

FIG. 1. A contour plot of the PES obtained by choosing the optimal height
above the surface for the one atom that is free to move for each position in
the surface plane is displayed. The positions of the five saddle points di-
rectly connected to the starting minimum are marked by filled squares with
the corresponding final states indicated by filled circles. The starting mini-
mum is indicated by1. The six other atoms in the seven-atom island that
are kept frozen are indicated by the crosses~see also Fig. 2!. The contour
spacing is 0.2 eV.

FIG. 2. The initial configuration without the random displacements, and the
five saddle points~left! together with the corresponding final configurations
~right!, are shown for the 3D PES. The saddle point energies with respect to
the initial configuration are also indicated~in eV!.

TABLE I. The finite difference parameters used for the Lanczos and dimer
methods. Also indicated are the parameter ranges tested and found to give
similar results to the ones presented in this study.

Lanczos dxL ~Å! dxlm ~Å!

Used 1024 1023

Tested 1026– 1022 1024– 1021

Dimer dxD ~Å! duD ~rad! dxlm ~Å!

Used 1024 1024 1023

Tested 1025– 1021 1025– 1021 1024– 1021
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When limiting the maximum step length to 0.1 Å it is
seen from Table II that the number of geometry steps needed
to reach the saddle points is quite similar for all the different
methods. But in terms of the average number of force calls
needed the minimum mode following methods perform sub-
stantially worse than the RFO approaches. The reason is that
for the minimum mode following methods a number of force
calls are needed per geometry step to~partially! converge the
lowest eigenmode of the Hessian and perform a line minimi-
zation step, whereas the RFO approaches only need one
force call per geometry step. We also note that the approxi-
mate RFO scheme is almost as good as the exact one for a
short maximum step length, indicating that the updating for-
mulas result in a rather good approximation to the full Hes-
sian matrix.

Increasing the maximum allowed step length reduces the
average number of geometry steps and force calls needed to
reach the saddle points for all methods tested, as seen from
Table II. However, the reduction is the strongest for the RFO
method with an exact Hessian. The higher reduction factor
for the RFO method with an exact Hessian~about 2.5 when
increasing the maximum step length from 0.1 to 0.5 Å! com-
pared to the minimum mode following methods~about 1.9!
indicates that the knowledge of all eigenmodes versus only
the lowest eigenmode helps considerably in reducing the
number of force calls needed to reach the saddle points. Fur-
thermore, the results in the table suggest that the local, sec-
ond order approximation to the 3D PES when making a step

is rather good even for a maximum allowed step length of
0.5 Å—that the approximate RFO schemes lead to a large
number of unwanted search results is due to the not suffi-
ciently accurate approximation of the Hessian eigenmodes in
these schemes.

The performance of the hybrid methods, both with exact
and approximate Hessians, has been checked and found to be
quite similar to the original ones with respect to the average
number of force calls~Table II!. For the hybrid RFO ap-
proach with an exact Hessian the number of force calls
needed is reduced slightly compared to the RFO approach
with an exact Hessian. For the hybrid RFO approach with
approximate Hessians starting the searches with a unit matrix
results in a slight increase in the number of force calls as
compare to the RFO approach with approximate Hessians
starting with a unit matrix. The number of force calls is about
the same when comparing the traditional and hybrid approxi-
mate RFO schemes with an exact initial Hessian, except for
Dxran50.5 Å where there is a decrease with the hybrid
scheme. The hybrid approximate RFO schemes with a maxi-
mum step length of 0.5 Å both result in more than a half of
the searches leading to unwanted results.

All results discussed above have been obtained with
Dxran50.1 Å ~the distance with which the initial configura-
tion is randomly displaced away from the starting minimum!.
Tests varyingDxran in the interval 0.1–0.3 Å show that the
average number of force calls needed to reach the different
saddle points hardly changes, except for a slight increase for

TABLE II. The overall performance of the different PES walkers is shown for the case where one edge atom of the seven-atom island is free to move.Dxmax

is the maximum step length allowed.nTS is the number of saddle points found within 4 eV of the starting minimum and directly connected to it; there are five
of them.n indicates how many of the searches found one of thenTS saddle points~out of 500 searches performed!. ^ f & and^s& are the average number of force
calls and geometry steps needed, respectively.ñ indicates how many searches found saddle points within 4 eV of the starting minimum and not directly
connected to it.dlL is the Lanczos eigenvalue convergence criterion,nD

max is the maximum number of dimer rotations, anddFD is the convergence criterion
used for the rotational force. For the approximate RFO methods searches have been started both with a unit matrix and an exact Hessian. All results are for
a random initial displacement ofDxran50.1 Å.

Method Dxmax ~Å! nTS n ^ f & ^s& ñ

Lanczos~Secs. II A, II C!, dlL50.01 0.1 4 458 144.9 29.8 0
dlL50.01 0.5 5 479 75.7 15.9 0
Dimer ~Secs. II B, II C!, dFD50.01 eV/Å 0.1 4 458 203.6 29.8 0
nD

max51 anddFD51.0 eV/Å 0.1 5 441 112.1 32.8 3
nD

max51 anddFD51.0 eV/Å 0.5 5 323 60.5 17.6 119
nD

max52 anddFD51.0 eV/Å 0.5 5 440 70.4 17.2 22

RFO ~exact, Sec. II D! 0.1 5 500 25.9 25.9 0
0.5 5 500 10.2 10.2 0

Hybrid RFO ~exact, Secs. II D, II F! 0.1 5 458 25.0 25.0 0
0.5 5 482 8.5 8.5 0

RFO ~Bofill, Sec. II E! 0.1 5 498 30.2 30.2 2
Exact initial H 0.1 5 497 30.0 30.0 3

0.2 5 487 21.2 21.2 11
Exact initial H 0.2 5 491 19.9 19.9 9

0.5 5 292 18.5 18.5 146
Exact initial H 0.5 5 340 19.2 19.2 140

Hybrid RFO ~Bofill, Secs. II E, II F! 0.1 5 427 35.2 35.2 7
Exact initial H 0.1 5 487 30.1 30.1 0

0.2 5 298 23.3 23.3 77
Exact initial H 0.2 5 450 20.4 20.4 40

0.5 5 203 19.1 19.1 101
Exact initial H 0.5 5 178 15.4 15.4 212
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the approximate RFO schemes~results not shown!. However,
the choice ofDxran do to some extent influence the number
of times the different saddle points are found. For all meth-
ods except Lanczos the number of times the third, fourth,
and fifth saddle points are found increases with increasing
Dxran, together with a decrease in the number of times the
first and second saddle points are found. For the Lanczos
method the third saddle point is found most often with
Dxran50.1 Å. From the results presented in Fig. 3, we see
that the Lanczos method performs somewhat better than the
other methods with respect to the number of times the most
difficult to locate saddle point~the third one! is found. An-
other way of increasing the number of times the third, fourth,
and fifth saddle points are found for the RFO approaches is
to use the hybrid version, but the Lanczos method still re-
mains the more efficient at finding the most difficult to locate
saddle point.

B. Seven atoms free to move

We have found more than 250 different saddle points
within 4 eV of the starting minimum and directly connected
to it. Even though they can be grouped together in classes
describing similar transition mechanisms, there are more
than 25 of these classes. Since our goal is to compare how
the different saddle point search methods perform, and not to
provide a full analysis of possible transitions mechanisms for
our model system, we will not enter into further detail on this
point.

The Lanczos and dimer results~Table III! were obtained
after a considerable effort searching the large parameter
space for optimal performance. The resulting settings are in-
dicated in Tables I and III. As a results of the effort to reach
optimal search performance, a set of standard parameter set-
tings was developed that could be adopted by others. This
will be discussed in more detail in Sec. IV D. When fully
converging the lowest Hessian eigenvalue the Lanczos
method needs on average about 8.7 force calls per geometry
step for Dxmax50.1 Å (dlL must be 0.0001 or lower to
reach convergence!, whereas the dimer method requires
about 16.4 force calls~the maximum rotational force allowed
needs to be set todFD50.01 eV/Å or lower to obtain con-
verged results!. This clearly indicates that the Lanczos
method is better in converging the lowest eigenmode than
the dimer method for a given geometry. However, fully con-
verging the lowest Hessian eigenvalue at each geometry step
is not a good strategy when employing the dimer or Lanczos
method. Optimal performance for the dimer method for
Dxmax50.1 Å is obtained when limiting the number of rota-
tions allowed for each geometry step (nD

max51) in combina-
tion with a less strict convergence criterion for the rotational
force (dFD50.1 eV/Å). Asseen from Table III this leads to
a larger number of saddle points being found, and a marked
decrease in the average number of force calls needed per
saddle point found that is directly connected to the starting
minimum ~if the goal is to locate as many saddle points
directly connect to the starting minimum as possible, this is
an important measure of the success of a series of searches!.
The performance of the Lanczos method forDxmax50.1 Å
can also be improved by limiting the number of Lanczos
iterations for each geometry step (nL

max53) and using a less
strict criterion for the Lanczos eigenvalue convergence
(dlL51.0), even though the effect is smaller than the effect
of limiting the number of rotations for the dimer method in
conjunction with a less strict convergence criterion for the
rotational force. From Table III we see that increasing the
maximum step lengthDxmax is an efficient way of increasing
the number of saddle points found and decreasing the aver-
age number of force calls needed per saddle point found that
is directly connected to the starting minimum. Starting the
searches further away from the minimum~by increasing
Dxran) also improves the efficiency of the minimum mode
following methods for finding as many saddle points as pos-
sible. In this way, more saddle points are found with the
minimum mode following methods than with the RFO meth-
ods. The results of Table III indicate that the two minimum
mode following methods are rather similar both with respect
to the average number of force calls needed to reach the
saddle points and the number of saddle points found directly
connected to the initial minimum.

The RFO approach with an exact Hessian is from Table
III seen to be very efficient compared to the minimum mode
following methods. For the same maximum step length con-
siderably less geometry steps and force calls are needed to
reach the saddle points. As in Sec. IV A, this indicates that
the knowledge of all eigenmodes instead of the lowest eigen-
mode only helps considerably in reducing the number of
geometry steps needed to reach the saddle points. However,

FIG. 3. In the figure the average number of force calls~filled circles! needed
to find the saddle point~the saddle point corresponding to the saddle point
number is indicated in Fig. 2! is shown together with the maximum and
minimum number of force calls~‘‘error’’ bars! for the 3D PES~left axis is
used!. The asterixes indicate how often the saddle points were found~out of
the 500 searches performed, right axis is used!. Note the logarithmic scale
on the right axes. In~a! the results for the Lanczos method are displayed
with Dxmax50.5 Å andDxran50.1 Å, in ~b! for the RFO method employing
an exact Hessian withDxmax50.5 Å andDxran50.3 Å, and in~c! for the
RFO method with a Bofill update starting with a unit matrix,Dxmax

50.15 Å, andDxran50.3 Å.
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the number of saddle points found is smaller than for the
minimum mode following methods. This can to some extent
be improved by employing the hybrid RFO with an exact
Hessian~note that the hybrid version is just as efficient as the
traditional RFO approach employing an exact Hessian with
respect to the average number of force calls!. An even more
efficient way of increasing the number of saddle points found
is to increaseDxran ~the distance with which the initial con-
figuration is randomly displaced away from the starting
minimum!, but the number of saddle points found remains
lower for the RFO approach with an exact Hessian than for
the minimum mode following methods. However, the aver-
age number of force calls needed per saddle point found that
is directly connected to the starting minimum is considerably
lower than for the minimum mode following methods.

The RFO approach employing a Bofill update of the
Hessian performs very well compared to the minimum mode
following methods with respect to the average number of
force calls needed, as is seen from Table III. In the cases
where an exact initial Hessian is used the average number of
geometry steps needed to reach the saddle points is slightly
smaller than for the minimum mode following methods. If
the search is started with a unit Hessian matrix the number of
geometry steps needed does increase, but due to the use of
only one force call per step, the RFO approach with a Bofill
update requires on average considerably less force calls then

the minimum mode following methods. However, as for the
RFO approach with an exact Hessian, relative few saddle
points are found when employing the RFO approach with a
Bofill update andDxran50.1 Å. But from considering the
average number of force calls needed per saddle point found
that is directly connected to the starting minimum, we see
that in all but one case a considerable improvement can be
obtained when employing the hybrid version of the approxi-
mate RFO approach instead of the traditional one. Further-
more, increasingDxran to 0.3 Å leads to a marked improve-
ment for the traditional RFO approach employing a Bofill
update, whereas the further improvement is marginal in this
case of the hybrid version. From these results we also see
that the approximate RFO approaches are better than the
minimum mode following methods with respect to average
number of force calls needed per saddle point found that is
directly connected to the starting minimum only in the cases
where the searches are started with a good initial Hessian.

The results for the RFO approach employing a Powell
update are quite similar to those for the Bofill update and
therefore not included in Table III. When the searches are
started with a unit matrix the Powell update needs on aver-
age about ten force calls more than the Bofill update~for all
Dxmax). Starting with an exact Hessian matrix the difference
is smaller, the Powell update needing on average about two
force calls more than the Bofill update. This indicates that

TABLE III. The overall performance of the different walkers for the 21D PES.nL
max is the maximum on the number of Lanczos iterations anddlL is the

Lanczos eigenvalue convergence criterion.nD
max is the maximum number of dimer rotations anddFD is the convergence criterion used for the rotational force.

^ f TS& is the average number of force calls needed per saddle point found that is directly connected to the starting minimum. The rest of the nomenclature is
the same as in Table II. Each set of results is based on 500 searches. There are more than 250 saddle points within 4 eV of the starting minimum and directly
connected to it.

Method Dxmax ~Å! Dxran ~Å! nTS n ^ f & ^ f TS& ^s& ñ

Lanczos~Secs. II A, II C!, dlL50.0001 0.1 0.1 20 497 435.8 10375.9 50.0 1
nL

max53 anddlL51.0 0.1 0.1 42 486 266.8 3175.9 54.2 14
nL

max53 anddlL51.0 0.4 0.1 84 344 190.4 1133.5 38.9 150
nL

max53 anddlL51.0 0.4 0.3 94 342 190.7 1014.2 38.9 122

Dimer ~Secs. II B, II C!, dFD50.01 eV/Å 0.1 0.1 20 497 820.5 20512.4 50.0 1
nD

max51 anddFD50.1 eV/Å 0.1 0.1 48 484 218.8 2279.4 57.6 14
nD

max51 anddFD50.1 eV/Å 0.3 0.1 84 249 164.8 960.9 44.0 221
nD

max52 anddFD50.1 eV/Å 0.45 0.1 82 335 197.3 1203.3 39.4 157
nD

max51 anddFD50.1 eV/Å 0.3 0.3 95 259 176.8 930.7 46.9 164

RFO ~exact, Sec. II D! 0.1 0.1 17 499 32.8 964.8 32.8 0
0.5 0.1 17 499 11.4 335.2 11.4 0
0.5 0.3 59 470 11.9 100.7 11.9 28

Hybrid RFO ~exact, Secs. II D, II F! 0.1 0.1 32 495 33.6 525.3 33.6 4
0.5 0.1 40 493 11.1 139.1 11.1 7
0.5 0.3 68 458 12.1 88.6 12.1 50

RFO ~Bofill, Sec. II E! 0.1 0.1 6 499 60.6 5047.6 60.6 0
Exact initial H 0.1 0.1 16 497 49.6 1548.8 49.6 1

0.2 0.1 10 500 47.8 2389.5 47.8 0
Exact initial H 0.2 0.1 13 497 36.8 1416.4 36.8 3
Exact initial H 0.2 0.3 60 402 73.9 616.1 73.9 94

Hybrid RFO ~Bofill, Secs. II E, II F! 0.1 0.1 10 500 61.0 3049.9 61.0 0
Exact initial H 0.1 0.1 33 484 50.0 757.4 50.0 16

0.2 0.1 10 492 50.1 2503.2 50.1 8
Exact initial H 0.2 0.1 35 470 39.1 558.1 39.1 28
Exact initial H 0.2 0.3 65 289 71.9 552.9 71.9 183
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the Bofill updater is better in building an approximate Hes-
sian from a poor starting situation than the Powell updater,
whereas they are almost equally good in preserving a good
approximation to the Hessian for this particular system.

C. 175 atoms free to move

We have found more than 170 different saddle points
within 4 eV of the starting minimum and directly connected
to it, belonging to more than 20 different classes describing
similar transition mechanism. For the same reason as in the
preceding section, we will not enter into further detail on this
point.

The results of the searches with the Lanczos and dimer
methods for the 525D PES are given in Table IV. As for the
3D and 21D PESs considerable effort went into finding pa-
rameters giving optimal performance~the parameters used
are given in Tables I and IV!. But, also as in the previous
cases, close to optimal performance can be reached with
standard settings~see Sec. IV D!. Using the dimer method to
fully converge the lowest Hessian eigenvalue at each geom-
etry step is very inefficient~results not shown!, and even
though the Lanczos method performs considerably better in
this respect~results also not shown!, this is a strategy that
should not be followed. Optimal performance for the dimer
method is reached by limiting the number of rotations at
each geometry step (nD

max51 or 2! in combination with a less
strict convergence criterion for the rotational force (dFD

50.1 eV/Å). This also results in more saddle points being
found and a large decrease in the number of force calls
needed per saddle point found that is directly connected to

the starting minimum~even though the number of unwanted
results of the searches do increase!. For the Lanczos method
the lowest average number of force calls per saddle point
found that is directly connected to the starting minimum is
obtained when restricting the maximum number of Lanczos
iterations per geometry step (nL

max54) in conjunction with a
less strict criterion for the Lanczos eigenvalue convergence
(dlL50.1). As also seen in the two preceding sections the
two minimum mode following methods are rather similar
both with respect to the average number of force calls needed
to reach the saddle points and the number of saddle points
found directly connected to the initial minimum.

Table IV shows that the average number of geometry
steps taken to reach a saddle point by the RFO approach
employing an exact Hessian is considerably smaller than for
the minimum mode following methods. It is worth noting
that the increase in the average number of steps taken is
rather small when increasing the dimension of the PES from
21 to 525. This indicates that accurate Hessian information
for all degrees of freedom can be used very efficiently by a
PES walker. Employing the hybrid version of the RFO ap-
proach with an exact Hessian gives a marked improvement
above the traditional RFO approach with an exact Hessian
with respect to the number of saddle points found, resulting
in less force calls needed per saddle point found that is di-
rectly connected to the starting minimum. Another way of
increasing the efficiency for the traditional RFO approach
with an exact Hessian in finding as many saddle points as
possible is to increaseDxran, whereas in the case of the hy-
brid version no further gain in efficiency is achieved.

TABLE IV. The overall performance of the different walkers for the 525D PES. The nomenclature is the same as in Tables II and III. Each set of results is
based on 500 searches. There are at least 170 saddle points within 4 eV of the starting minimum and directly connected to it.

Method Dxmax ~Å! Dxran ~Å! nTS n ^ f & ^ f TS& ^s& ñ

Lanczos~Secs. II A, II C! nL
max53 anddlL51.0 0.1 0.1 40 365 514.0 6424.8 103.6 132

nL
max54 anddlL50.1 0.5 0.1 69 214 378.3 2741.3 73.8 281

nL
max54 anddlL50.1 0.5 0.3 86 210 372.1 2163.4 72.7 265

Dimer ~Secs. II B, II C! nD
max51 anddFD50.1 eV/Å 0.1 0.1 52 375 405.4 3898.4 105.9 122

nD
max51 anddFD50.1 eV/Å 0.3 0.1 60 145 314.4 2620.1 83.0 335

nD
max52 anddFD50.1 eV/Å 0.45 0.1 66 196 360.7 2732.8 71.2 291

nD
max51 anddFD50.1 eV/Å 0.15 0.3 78 276 335.1 2148.3 87.8 222

RFO ~exact, Sec. II D! 0.1 0.1 11 492 40.9 1859.1 40.9 0
0.5 0.1 10 488 15.0 750.0 15.0 0
0.5 0.3 45 413 19.1 212.2 19.1 57

Hybrid RFO ~exact, Secs. II D, II F! 0.1 0.1 18 500 36.3 1008.3 36.3 0
0.5 0.1 51 476 14.9 146.1 14.9 24
0.5 0.3 58 411 17.1 147.4 17.1 87

RFO ~Bofill, Sec. II E! 0.1 0.1 6 449 1420.9 118408.3 1420.9 17
Exact initial H 0.1 0.1 5 494 311.3 31130.0 311.3 4

0.2 0.1 16 353 1286.6 40206.3 1286.6 124
Exact initial H 0.2 0.1 10 432 342.6 17130.0 342.6 63
Exact initial H 0.1 0.3 27 474 539.2 9985.2 539.2 20

Hybrid RFO ~Bofill, Secs. II E, II F! 0.1 0.1 9 441 1351.1 75005.6 1351.1 44
Exact initial H 0.1 0.1 11 481 282.6 12845.5 282.6 17

0.2 0.1 17 294 1224.3 36008.8 1224.3 154
Exact initial H 0.2 0.1 15 380 291.4 9713.3 291.4 110
Exact initial H 0.1 0.3 30 406 465.2 7753.3 465.2 84
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The RFO approach with a Bofill update started with an
exact Hessian requires on average less force calls to reach a
saddle point than the minimum mode following methods for
Dxran50.1 Å, but at the same time we see from Table IV
that the average number of geometry steps needed is consid-
erably higher. Also, the number of saddle points found is
low, and the number of force calls needed per saddle point
found that is directly connected to the starting minimum is
much higher than for the minimum mode following methods.
If the searches are started with a unit matrix the RFO ap-
proach with an approximate Hessian performs considerably
worse than the minimum mode following methods: Not only
does it take a lot more force calls to home in on a saddle
point, the number of force calls needed per saddle point
found that is directly connected to the starting minimum is
very high. Employing the hybrid version of the RFO ap-
proach with a Bofill update improves all aspects of the
search performance compared to the traditional RFO ap-
proach with a Bofill update, but the minimum mode methods
remain superior with respect to the number of force calls
needed per saddle point found that is directly connected to
the starting minimum. Furthermore, increasingDxran does
lower the number of force calls needed per saddle point
found that is directly connected to the starting minimum, but
not enough to compete with the minimum mode methods,
and the advantage above the minimum mode methods with
respect to the average number of force calls needed is lost.
Thus when the dimension of the system increases the Bofill
updater is struggling harder to buildup a reasonable approxi-
mation to the Hessian. Even when provided with an excellent
~in this case exact! starting Hessian the update formulas are
struggling to keep up with the changes in the Hessian as the
system moves towards the saddle points.

For this 525D PES the Powell updater performs consid-
erably worse than the Bofill updater—starting with an exact
Hessian the Powell updater requires 200–250 more force
calls than the Bofill updater and starting with a unit matrix it
requires 350–500 force calls more~results not shown here!.

D. Emerging guidelines for optimal searches

From Secs. II, IV A, IV B, and IV C it is clear that the
number of tunable parameters is larger for the two minimum
mode following methods than for the~hybrid! RFO methods.
However, in most cases it will not be necessary to perform a
full optimization with respect to all parameters. Through our
experience with the current systems~but also other systems!

we have developed a set of parameter settings that for most
purposes will result in efficient saddle point searching. These
parameters are displayed in Table V, where they have been
listed in the order of importance with respect to the effi-
ciency of the searches.

The easiest parameters to set are the finite difference
parameters (dxL , dxD , duD , and dxlm). Optimization of
these parameters beyond the values given in Table V will not
result in appreciable changes in the outcome of the searches.
In our experience search performance varies in the range
610% for the parameter ranges displayed in Table I, and
only those that have a deeper interest in the methodology of
the Lanczos or dimer method might want to explore other
settings than given in Table V. When using empirical~ana-
lytical! potentials, the finite difference distances~angles! can
be set to the small value 0.001 Å~radian!. If the calculated
forces contain numerical noise, for example, when employ-
ing electronic structure calculation based on density func-
tional theory, the distances~angles! should be chosen larger
@0.01 Å ~radian!#. Note that in the latter case the calculated
forces may have to be converged more accurately than nor-
mally done for minimizations, because the minimum mode
following methods calculate curvatures through finite force
differences.

The minimum mode following methods are most effi-
cient if the lowest Hessian eigenvector is not fully converged
at the beginning of a search—there is little to be gained by
finding the lowest curvature mode very accurately at a point
in space far from a saddle point. In the convex region around
minima, where all Hessian eigenvalues are positive, the
minimum mode finding iterations should certainly not be
highly optimized. Finding the lowest mode accurately in this
region will typically result in a low energy, delocalized
breathing mode~when considering high-dimensional sys-
tems!. Once such a delocalized mode is found, the minimum
mode following methods will rarely be able to find a saddle
point. It is a far better strategy to ensure that the lowest
Hessian eigenvector is gradually converged towards the low-
est curvature mode as the system is moved from the starting
configuration towards the saddle point. Actually, this gradual
convergence is exactly what is accomplished by allowing
only a few Hessian eigenvector optimization iterations per
geometry step.

Varying the parameters that control the minimum mode
optimization (nL

max, dlL , nD
max, anddFD) relative to the pa-

rameter values indicated in Table V may further enhance the

TABLE V. Parameter choices that will result in an efficient use of the minimum mode following methods. The
parameters which are affecting the efficiency the most are listed first. For the finite difference parameters the
smaller value should be used in conjunction with empirical~analytical! potentials and the larger value when the
force evaluations contain numerical noise~see text!. For small or medium sized systems a maximum of three
Lanczos iterations should be employed, whereas a maximum of four Lanczos iterations is more appropriate for
large systems.

Lanczos Dxmax ~Å! Dxran ~Å! nL
max dlL dxL ~Å! dxlm ~Å!

0.1–0.5 0.1–0.3 3, 4 0.1 0.001, 0.01 0.001, 0.01

Dimer Dxmax ~Å! Dxran ~Å! nD
max dFD ~eV/Å! dxD ~Å! duD ~rad! dxlm ~Å!

0.1–0.5 0.1–0.3 1 0.1 0.001, 0.01 0.001, 0.01 0.001, 0.01
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efficiency of the searches. However, the increased efficiency
beyond that which can be achieved with those parameter
values, may not warrant the extra effort spent in detailed
optimization of these parameters. If such an optimization is
undertaken, one should note that when imposing a maximum
on the number Lanczos iterationsnL

max, a simultaneous ad-
justment ofdlL can serve to reduce the number of actual
iterations performed~when the lowest Hessian eigenvalue is
converging fast enough to meet this criterion!. The relation
between the maximum number of dimer rotationsnD

max and
the maximum allowed rotational forcedFD is similar. The
actual number of dimer rotations can be reduced if the maxi-
mum rotational force criterion is met before the maximum
number of rotations have been performed. IncreasingnL

max

(nD
max) and/or decreasingdlL (dFD), while keeping all other

parameters fixed, will tend to lead to better streambed fol-
lowing and therefore more conservative searches, i.e., often
the lowest lying saddle points will be found.

A proper choice ofDxmax is important for the Lanczos
and dimer methods, as it also is for the RFO approaches. It
can be used to tune the efficiency of the searches in terms of
the number of force calls needed and to optimize the variety
of saddle points found. The optimal strategy will be different
for different applications. If the lowest saddle point is de-
sired, or only a few searches can be run because of computer
limitations, a conservative setting is preferred. If many
saddles are desired and many searches can be run, an aggres-
sive, large value of the maximum step length will be better.
This is demonstrated in Fig. 4 by displaying the performance
of 500 Lanczos and dimer searches for varying maximum
step lengths for the 525D system, employing the parameter
settings given in Table V. For a small step length, few saddle
points are found@Fig. 4~a!#, but most of them are directly
connected to the starting minimum. As the maximum length
is increased the searches become more aggressive. Each
search requires fewer force calls@Fig. 4~b!#, reaching a mini-
mum of 376.5~303.1! at Dxmax50.45~0.45! Å for the Lanc-
zos ~dimer! method. At the same time, more saddle points
are found so that the number of force calls per saddle point
which is directly connected to the starting minimum also
drops, reaching a minimum of 2751.3~2723.2! at Dxmax

50.35 ~0.30! Å @Fig. 4~c!#. For very aggressive searches
with the maximum step length greater than 0.45~0.45! Å the
cost per search increases@Fig. 4~b!# due to a tendency for
some searches to take many iterations at high energy before
converging. The number of saddle points found, not neces-
sarily directly connected to the starting minimum, increases
with increasing maximum step length, reaching 286~368!
out of 500 searches atDxmax50.5 ~0.35! Å @Fig. 4~d!#. This
large range of different saddle points can be valuable for
some applications, but if one is interested in as many saddles
points which are directly connected to the starting minimum
as possible, a maximum step length of 0.35~0.30! Å is op-
timal @Fig. 4~c!#. Note that from a comparison of results from
Fig. 4 and Table IV, it is seen that little is lost by employing
the standard settings from Table V as compared to the more
fully optimized parameters used in Sec. IV C.

The parameterDxran ~the distance with which the system
is randomly displaced away from the starting minimum! also

influences the outcome of the searches. It is seen from Tables
III and IV that similar considerations apply as forDxmax. If
only the lowest saddle point is desired, or the number of
searches need to be limited due to computational limitations,
a small value~0.1 Å! is preferred. However, if one attempts
to make a map of all relevant saddle points and many
searches can be run, a larger value~0.2–0.3 Å! will in most
cases be better.

It is important that a saddle point search method can be
run with minimal adjustments of parameters. From the above
considerations it is clear that for most applications only two
parameters (Dxmax,Dxran) need to be considered when em-
ploying the Lanczos or dimer method. These are the same
two parameters that need to be optimized when employing
the ~hybrid! RFO methods, and one should therefore con-
sider the minimum mode following methods as easy in use
as the~hybrid! RFO methods. Thus, which method to choose
can be decided purely on how well the different methods
perform in a given situation.

The results presented above and in the three Secs. IV A,
IV B, and IV C show that the Lanczos and dimer methods are
rather similar both with respect to the average number of
force calls needed to reach the saddle points and the number
of saddle points found directly connected to the initial mini-
mum. Also when considering the total computational effort
they perform similarly, as seen from Fig. 5.

For the low-dimensional system there is little difference

FIG. 4. Results of 500 Lanczos and dimer searches for varying maximum
step lengthsDxmax for the 525D system, employing the parameter settings
given in Table V.~a! The number of saddle points found within 4 eV of the
starting minimum and directly connected to it.~b! The average number of
force calls needed to reach them.~c! The average number of force calls per
saddle point found within 4 eV of the starting minimum and directly con-
nected to it.~d! The total number of saddle points found, including those
that are not directly connected to the starting minimum.
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between the RFO methods using the two approximate Hes-
sians, the Bofill and Powell updaters. But when increasing
the dimension of the system the Bofill updater clearly per-
forms better than the Powell updater. This holds for searches
started with an exact initial Hessian as well as with a unit
matrix. Therefore the RFO approach with a Bofill updater
will be considered as the representative RFO method with an
approximate Hessian in the following comparisons.

In determining the most efficient saddle point search
method for the 525D system, a number of considerations
must be made, and they lead to guidelines for optimal search
methods as summarized in Table VI. When working with a
rather simple model potential where the force can be calcu-
lated cheaply ~through analytical derivatives, as in the
present study!, the cost of the full diagonalization of the
Hessian matrix renders the~hybrid! RFO approaches far too
computationally demanding compared to the minimum mode
following methods~Fig. 5!. However, if calculating the force
becomes much more expensive, e.g., when it is obtained
from an electronic structure calculation at the density func-
tional theory or higher levels, the diagonalization may no
longer be the dominant part. But since an increasing cost of
calculating the force also implies that the calculation of the
exact Hessian would become very demanding, the~hybrid!
RFO approach employing an exact Hessian would still not be
an alternative to the minimum mode following methods. This
argument does not apply to the approximate~hybrid! RFO
scheme, where the computational cost will be dominated by
the force evaluations. From Table IV we see that the~hybrid!
RFO approach with a Bofill update of the approximate Hes-
sian starting from an exact initial Hessian locates the saddle
points using on average less force calls than the minimum
mode following methods, and it will therefore be favored
with respect to the computational effort. However, the table
also shows that the minimum mode following methods lo-
cate appreciably more saddle points and requires consider-
able less force calls per saddle point found that is directly
connected to the starting minimum than the~hybrid! RFO
approach with a Bofill update. Taken together this indicates
that if only the lowest saddle points are sought, and one can

start the search with a good initial estimate of the Hessian,
and the cost of the diagonalization will not be dominating,
the ~hybrid! RFO approach with a Bofill updater is to be
preferred above the minimum mode following methods. But
in all other cases the minimum mode following methods
clearly represent the better choice. Note that the requirement
of starting with a good initial estimate of the Hessian for the
~hybrid! RFO approach might further limit the use of this
method in the case of high-dimensional systems.

Similar considerations can be made for the 21D system.

TABLE VI. In the table the preferred method for optimal saddle point searches is indicated for different system
sizes. It depends on whether the force is cheap to calculate~e.g., if the force is obtained analytically from a
simple model potential as in the present case! or expensive to calculate~e.g., if it is obtained from an electronic
structure calculation at the density functional theory or at higher levels!. The preferred method also depends on
whether the goal of the study is to find only the few lowest saddle points or a more complete mapping of all
saddle points is intended. The guidelines are given based on a combination of the considerations presented in
Sec. IV D. The word hybrid within parentheses indicates that both the standard and hybrid versions of the RFO
method could be used. For the 21D and 525D systems, it is essential to used a good estimate of the initial
Hessian for the~hybrid! RFO approach with a Bofill update. Otherwise the minimum mode following methods
will be the preferred choice.

System size

Cheap force Expensive force

Lowest saddle points All saddle points Lowest saddle points All saddle points

3D ~Hybrid! RFO exact Minimum mode or
~Hybrid! RFO exact

~Hybrid! RFO Bofill Minimum mode or
~Hybrid! RFO Bofill

21D ~Hybrid! RFO exact ~Hybrid! RFO exact ~Hybrid! RFO Bofill Minimum mode or
~Hybrid! RFO Bofill

525D Minimum mode Minimum mode Minimum mode or
~Hybrid! RFO Bofill

Minimum mode

FIG. 5. ~Color online! The total computational effort is given in CPU-
seconds for the different system sizes. Representative results for each
method are presented forDxran50.1 Å. For the minimum mode following
methods the effort is completely dominated by the force calls. For the hybrid
RFO ~HRFO! method employing an exact Hessian the computational effort
of calculating the Hessian together with the diagonalization of it has been
indicated separately. Since similar results are found for the RFO methods
employing an approximate Hessian they have not been included in this
figure. The lines are meant as a guide to the eye. Note the logarithmic scale
on both axes.
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If the force can be calculated cheaply, we see from Fig. 5 that
the ~hybrid! RFO approach using an exact Hessian requires
the least total computational effort, and the method effi-
ciently locates the lowest saddle points. From Table III we
also see that this method is the most efficient with respect to
the number of force calls needed per saddle point found that
is directly connected to the starting minimum. Considering
the case where the force is expensive to calculate, the~hy-
brid! RFO approach with an exact Hessian is no longer an
alternative~see preceding paragraph!. However, the~hybrid!
RFO approach with a Bofill updater requires considerably
less force calls than the minimum mode following methods
and locates the lowest saddle points efficiently. But if the
goal is to locate as many saddle points as possible, we see
from Table III that only in the case of starting the searches
with a good initial Hessian does the~hybrid! RFO approach
with a Bofill updater require less force calls per saddle point
found than the minimum mode methods. The guidelines for
optimal search methods for the 21D system are summarized
in Table VI.

From Fig. 5 we see that the~hybrid! RFO approach us-
ing an exact Hessian requires the least total computational
effort for the 3D system when the force is cheap to calculate,
and this will therefore be the preferred method if the lowest
saddle points are sought. But even if all methods are able to
locate all five saddle points, Fig. 3 indicates that the Lanczos
method finds the most difficult to locate saddle point more
often than the~hybrid! RFO approach with an exact Hessian,
suggesting that less searches employing the Lanczos method
would be needed as compared to the~hybrid! RFO approach
with an exact Hessian when attempting to locate as many
saddle points as possible. Taking this into account, the Lanc-
zos method and~hybrid! RFO approach with an exact Hes-
sian would perform almost equally well. For cases where the
force is expensive to calculate the~hybrid! RFO approach
using an exact Hessian would become too computationally
demanding compared to the other methods~see above!. But
from Table II we see that the~hybrid! RFO approach with a
Bofill update requires considerably less force calls to reach
the saddle points than the minimum mode methods, making
it the preferred method when seeking to locate the lowest
saddle points. As in the case where the force is cheap to
calculate, the different efficiencies in finding the most diffi-
cult to locate saddle point render the performance of the
~hybrid! RFO approach with a Bofill update and the Lanczos
method rather similar. In Table VI the guidelines for optimal
search methods for the 3D system are summarized.

In closing this section, we would like to stress that a
different maximum step length is required for optimal per-
formance of the different methods.

V. CONCLUSIONS

Being able to locate saddle points on PESs is a prereq-
uisite to the study of transitions when working within the
harmonic approximation to transition state theory~whether
used explicitly or implicitly!. It is therefore not surprising
that there has been a large number of studies in which dif-
ferent saddle point search methods have been developed or
refined. However, in many cases it is assumed that a reason-

able guess for the saddle point can be made and/or that the
transition proceeds to a known final state. The number of
studies describing methods allowing one to walk from a
minimum to a saddle point without any knowledge of the
final state are more limited, and, to the best of our knowl-
edge, a systematic comparison of how such methods perform
has not yet been made. In an effort to improve this situation
we have set out to compare some traditional all-mode fol-
lowing methods with more recently developed minimum
mode following methods.

As representative examples of the all-mode following
methods we have investigated the performance of some
modified Newton-Raphson approaches, the RFO methods
pioneered by Cerjan and Miller1 and Simonset al.3,5 using
either exact or approximate Hessians. In these methods all
Hessian eigenvalues and eigenvectors are used together with
the gradient vector to calculate the steps leading towards a
saddle point. A comparison is made between the different
versions of the all-mode following methods and also with
two minimum mode following approaches, the Lanczos and
dimer methods, where only the lowest eigenvalue and eigen-
vector are used in conjunction with the gradient vector to
determine the steps. We have also tested the performance of
hybrid versions of the RFO approaches in which the geom-
etry steps are determined as in the minimum mode following
methods in the convex regions of the PES~where all Hessian
eigenvalues are positive! and as in the traditional RFO meth-
ods outside these regions. The PES walkers have been tested
on a model system involving transitions in a seven-atom Pt
island on a Pt~111! surface using a simple Morse pairwise
potential function. Three different model system sizes have
been considered—the full system with 175 moving atoms
and two reduced size systems. The PES governing the tran-
sitions for the largest system is a 525D one, the reduced size
systems are of 21D and 3D, respectively.

In terms of the average number of force calls needed to
reach the different saddle points the RFO approach employ-
ing an exact Hessian is clearly better than the RFO ap-
proaches employing an approximate Hessian or the mini-
mum mode following methods. However, due to the cost of
calculating the exact Hessian and the cost of performing a
full diagonalization of it, the total computational effort is in
most cases unfavorable compared to the other methods. Only
when the Hessian matrix can be calculated cheaply and the
diagonalization of it does not dominate the overall effort, the
RFO approach employing an exact Hessian is the most effi-
cient of the methods we have tested. This is the case for
small ~3D! and medium~21D! sized systems where, e.g., a
simple model potential like the one used here is employed
and the Hessian matrix can be obtained analytically without
much effort. Our results also show that the traditional RFO
approach employing an exact Hessian mainly finds the low-
est saddle points, but this behavior can be improved consid-
erably by starting the search further away from the starting
minimum or by employing the hybrid version introduced
here.

With respect to the average number of force calls the
RFO searches based on a Bofill update of the approximate
Hessian also perform better than the minimum mode follow-
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ing methods for the three systems sizes tested here. But due
to the cost of performing a full diagonalization of Hessian,
the overall computational effort will only be favorable in
situations were the cost of calculating the force clearly domi-
nates over the cost of the diagonalization. Furthermore, as
for the RFO approach employing an exact Hessian, the RFO
approach employing an approximate Hessian mainly locates
the lower-lying saddle points. For the small~3D! and me-
dium ~21D! sized system starting the search further away
from the initial minimum or using the hybrid version im-
proves this behavior considerably, but in the case of the large
~525D! system the improvement is less pronounced. Taken
together this means that the~hybrid! RFO approach employ-
ing an approximate Hessian through a Bofill update is the
most efficient of the methods tested here for the small and
medium sized system, and when the cost of calculating the
force represents the dominating part of the overall computa-
tional effort. For large systems the~hybrid! RFO approach is
the most efficient only when the lowest saddle points are
sought and the calculation of the force is dominating the
overall computational effort. The latter is true if, e.g., the
force is obtained through an electronic structure calculation
at the density functional theory or higher levels. Starting the
searches with a good initial approximation for the Hessian is
not very important for the small~3D! systems, but a prereq-
uisite for the medium~21D! and large~525D! systems.

The minimum mode following methods are to be pre-
ferred if a more complete mapping of all existing saddle
points is desired for a large system. Also in the cases where
only the lowest saddle points are sought for large systems
and the force can be evaluated cheaply~e.g., if a simple
model potential is used! the minimum mode following meth-
ods will be the preferred choice. Moreover, the minimum
mode following methods will be preferred above the~hybrid!
RFO approach employing an approximate Hessian through a
Bofill update for large systems where the force is expensive
to calculate and a good initial approximation for the Hessian
is not available.

When working with the dimer method it is essential to
limit the number of dimer rotations and to use a convergence
criterion for the rotational force that is not too strict, i.e., not
to work with a fully converged lowest eigenmode. Although
somewhat less important for the Lanczos method, working
with a not fully converged lowest eigenmode by limiting the
number Lanczos iterations and using a less strict criterion for
the Lanczos eigenvalue convergence, also improves the per-
formance of the method considerably. To facilitate the use of
the minimum mode following methods we have presented a
set of ‘‘safe’’ parameter settings that in most cases will result
in efficient saddle point searching. This renders the minimum
mode following methods just as easy to use as the traditional
RFO approach.

Finally, for all methods it is seen that the maximum
length allowed for each geometry step is an important pa-
rameter, and a good choice can reduce the computational
effort considerably and produce the wanted saddle point
search behavior. A proper choice of the initial displacement
away from the starting minimum is also important for obtain-
ing the desired search results.
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23Ö. Farkas and H. B. Schlegel, Phys. Chem. Chem. Phys.4, 11 ~2002!.
24P. Deglmann and F. Furche, J. Chem. Phys.117, 9535~2002!.
25B. Peters, W. Liang, A. T. Bell, and A. Chakraborty, J. Chem. Phys.118,

9533 ~2003!.
26M. V. Fernández-Serra, E. Artacho, and J. M. Soler, Phys. Rev. B67,

100101~R! ~2003!.
27R. Crehuet and M. J. Field, J. Chem. Phys.118, 9563~2003!.
28G. Henkelman, G. Jo´hannesson, and H. Jo´nsson, inProgress in Theoreti-

cal Chemistry and Physics, edited by S. D. Schwartz~Kluwer Academic,
Dordrecht, 2000!, Vol. 5.

29H. B. Schlegel, J. Comput. Chem.24, 1514~2003!.
30P. J. Feibelman, Phys. Rev. Lett.65, 729 ~1990!.
31P. Salvador, J. Phys. Chem.89, 3863~1985!.
32J. Augustynski, Struct. Bonding~Berlin! 69, 1 ~1988!.
33K. J. Gross, S. Guthrie, S. Takara, and G. Thomas, J. Alloys Compd.297,

270 ~2000!.
34W. Nowak, R. Czerminski, and R. Elber, J. Am. Chem. Soc.113, 5627

~1991!.
35M. Pavlov, P. E. M. Siegbahn, M. R. A. Blomberg, and R. H. Crabtree, J.

Am. Chem. Soc.120, 548 ~1998!.

9791J. Chem. Phys., Vol. 121, No. 20, 22 November 2004 Finding saddle points

Downloaded 22 Nov 2004 to 146.6.143.211. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



36C. Alhambra, J. Gao, J. C. Corchado, J. Villa, and D. G. Truhlar, J. Am.
Chem. Soc.121, 2253~1999!.

37P. E. M. Siegbahn and M. R. A. Blomberg, Chem. Rev.~Washington,
D.C.! 100, 421 ~2000!.

38M. Stein, E. van Lenthe, E. J. Baerends, and W. Lubitz, J. Am. Chem. Soc.
123, 5839~2001!.

39F. Himo and P. E. M. Siegbahn, Chem. Rev.~Washington, D.C.! 103, 2421
~2003!.

40E. R. Davidson, J. Comput. Phys.17, 87 ~1975!.
41M. T. Heath,Scientific Computing: An Introductory Survey, McGraw-Hill

Series in Computer Science~McGraw-Hill, New York, 1997!.
42W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-

merical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed.
~Cambridge University Press, Cambridge, 1992!.

43B. N. Parlett,The Symmetric Eigenvalue Problem, Prentice-Hall series in
computational mathematics~Prentice-Hall, Englewood Cliffs, NJ, 1980!.

44G. H. Golub and C. F. van Loan,Matrix Computations, 3rd ed. ~John
Hopkins University Press, Baltimore, 1996!.

45E. Anderson, Z. Bai, C. Bischofet al., LAPACK Users’ Guide, 3rd ed.
~Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999!,
ISBN 0-89871-447-8~paperback!.

46M. J. D. Powell,Nonlinear programing~Academic, New York, 1970!.
47B. A. Murtagh and R. W. H. Sargent, Comput. J.13, 185 ~1970!.
48D. W. Bassett and P. R. Webber, Surf. Sci.70, 520 ~1978!.

9792 J. Chem. Phys., Vol. 121, No. 20, 22 November 2004 Olsen et al.

Downloaded 22 Nov 2004 to 146.6.143.211. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


