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A method for accelerating molecular dynamics simulations in rare event systems is described.
From each new state visited, high temperature molecular dynamics trajectories are used to discover
the set of escape mechanisms and rates. This event table is provided to the adaptive kinetic Monte
Carlo algorithm to model the evolution of the system from state to state. Importantly, an estimator
for the completeness of the calculated rate table in each state is derived. The method is applied to
three model systems: adatom diffusion on Al(100); island diffusion on Pt(111); and vacancy cluster
ripening in bulk Fe. Connections to the closely-related temperature accelerated dynamics method
of Voter and coworkers is discussed.

I. INTRODUCTION

Adaptive kinetic Monte Carlo (AKMC) is a method
which applies dynamically-constructed rate tables to
kinetic Monte Carlo (KMC) simulations.[1] For each
unique state that the system visits, searches are per-
formed on the potential energy surface (PES) to find
low-energy first-order saddle points leading to adjacent
states. Saddle searches have been carried out with mini-
mum mode (min-mode) following algorithms such as the
dimer method [2], Raleigh-Ritz minimization [3] as in the
hybrid eigenvector following method [4], or the Lanczos
method as in the activation relaxation technique (ART)
nouveau [5]. Given the geometry of the saddle point,
rates can be efficiently calculated for the forward and
backward reactions using the harmonic approximation to
transition state theory (HTST). In this paper, we com-
pare the efficiency of min-mode following saddle searches
to high temperature molecular dynamics (MD) saddle
searches.
When using a min-mode following method, initial con-

figurations are generated by displacing away from a min-
imum energy configuration. The choice of which degrees
of freedom to displace (e.g. under-coordinated atoms)
and the distribution of the displacement (e.g. a Gaussian
distribution with a predetermined variance) need to be
determined for each system under investigation. These
parameters not only effect the computational efficiency
of the algorithm, but also the accuracy of the resulting
KMC simulation, as the distribution of initial configura-
tions and the shape of the potential energy surface de-
termine the probability that a particular saddle will be
found. This makes it difficult to calculate the confidence
that all of the important reactive events that are relevant
at the simulation temperature have been found.
In a MD saddle search, the trajectory is confined to

the initial potential energy basin by detecting when it
escapes the basin and restarting it within the basin. The
escape events can be detected by periodically performing
a geometry optimization to determine if the trajectory is
still in the initial energy basin. If it has exited, the tra-
jectory is terminated and a nudged elastic band (NEB)
[6, 7] and/or min-mode following calculation is performed

to locate the saddle point between the initial and final
state basins.

An important advantage of using MD over min-mode
following methods to find saddle points is that the prob-
ability of finding escape mechanisms with MD is directly
proportional to their rates and their relative importance
in the AKMC event table. At elevated MD tempera-
tures, high entropy processes are overrepresented as com-
pared to the temperature of interest, but this bias can
be corrected within the HTST approximation. This is
the strategy used by Voter and coworkers in their tem-
perature accelerated dynamics (TAD) method [8], where
escape events are found with high temperature MD tra-
jectories and the escape times at the low temperature are
determined from an Arrhenius extrapolation.

This work closely follows the TAD procedure for sam-
pling possible escape pathways with high temperature
MD. The difference is that we are not aiming to find
just the first escape event at low temperature, instead,
we want to find the entire set of escape pathways and
rates that are accessible at the low temperature for use
in AKMC. Key to the effective use of MD saddle search
with AKMC (MDSS-AKMC) is an estimator for the com-
pleteness of the rate table. In past work, a confidence in
the rate table found with min-mode following methods
was based upon an assumed distribution for discovering
saddle points, such as a uniform distribution.[9] This as-
sumption can be a poor one. Even in well understood sys-
tems where the chosen initial displacement size and direc-
tion are close to optimal, it can be hundreds of times more
likely to find one saddle than another, even when the two
events have a similar rate.[2] With MD saddle searches,
however, an unbiased error in the KMC rate catalog can
be determined. Recently, Bhute and Chatterjee have
shown how this can be done using a maximum likeli-
hood estimation of the total escape rate.[10, 11] Here, we
use the HTST expression as in TAD to derive an esti-
mator for the error in the total rate, and use this as a
criterion for sufficient discovery of the rate catalogue to
escape a state. In this way, we show how MDSS based
AKMC can be done with higher accuracy and sometimes
even more efficiently than when based upon min-mode
following saddle searches. All numerical calculation were
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performed with the EON software.[12]

II. ERROR IN THE ESCAPE RATE DUE TO
AN INCOMPLETE RATE CATALOG

The complete rate catalog C is the set of escape rate
constants of all N possible escape processes from a po-
tential energy basin. Technically this is a multiset as
different processes may have the same rate constant. Ini-
tially, when dynamically building the rate catalog, none
of the processes are known. As they are identified, they
are added to the set of found events F and removed from
the complementary set of missing events M. The total
escape rate, K, is defined as the sum of the escape rates,
ki, of each process at the low temperature of interest

K =

N∑
i=1

ki,Tlow
. (1)

In a KMC simulation, the probability of picking an
event is proportional to its rate. Thus an appropriate er-
ror measure E for the rate catalogue F is the probability
of picking one of the missing processes (in M) in a KMC
step based upon the complete catalogue C,

E(F) = 1− 1

K

∑
ki∈F

ki,Tlow
=

1

K

∑
ki∈M

ki,Tlow
. (2)

Under our assumption of first-order kinetics, the mean-
first-escape-time for each process, τi, is exponentially dis-
tributed according to the rate ki. Integrating the distri-
bution up to time t yields the probability that the process
has occurred by time t

p(t; ki) =

∫ t

0

ki exp(−kiτi) dτi = 1− exp(−kit). (3)

The probability of having found a particular set F of pro-
cesses by time t in the high temperature MD simulation
is

P (F) =
∏
ki∈F

p(t; ki,Thigh
)
∏

ki∈M

1− p(t; ki,Thigh
). (4)

Here, ki,Thigh
are the rate constants at the high temper-

ature. P (F) represents the joint probability of having
independently found the events in F and having not yet
found the events in M. Now we may express the aver-
age error at time t by averaging over all possible sets of
processes that may be found

E(C) =
∑

F∈P(C)

P (F)E(F) (5)

= 1− 1

K

N∑
i=1

p(t; ki,Thigh
)ki,Tlow

, (6)
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FIG. 1. Distribution of rate constants ki,Tlow in a model sys-
tem. As the temperature is raised, the rate constants ki,Thigh

become closer.

10-3

10-2

10-1

1

 0  20  40  60  80  100  120  140

R
el

. E
rr

or
 T

ot
al

 R
at

e

Time (s)

= ki,Tlow

= ki,Tlow

1/2

= ki,Tlow

3/4

ki,Thigh

ki,Thigh

ki,Thigh

FIG. 2. Comparison of the average error in the rate cata-
log E(C) (solid line) and the proposed estimator of the error
X(F) (dashed line) for the three distributions of high tem-
perature rates shown in Fig. 1.

where the P(C) represents the power set (the set of all
subsets) of C. A derivation of Eq. 6 is given in Ap-
pendix A. In the case that k1,Thigh

= k2,Thigh
= . . . =

kN,Thigh
= kThigh

, Eq. 6 reduces to the simple form

E(C) = 1− p(t; kThigh
) = exp(−kThigh

t). (7)

Note that there is no dependence upon N in this last
expression. This means that if all of high temperature
rate constants are equal then the uncertainty in the rate
table can be expressed exactly using only that rate.

III. ESTIMATOR OF THE ESCAPE RATE
ERROR

In an AKMC simulation, only the set of found pro-
cesses F are known. The total rate K is unknown and
therefore Eqs. 2 and 5 cannot be evaluated directly. In-
stead, we can construct an estimator for the average error
using information from the set F and the MD time used
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to discover F,

X(F) = 1−
∑
ki∈F

p(t; ki,Thigh
)ki,Tlow

/
∑
ki∈F

ki,Tlow
. (8)

The assumption made in Eq. 8 is that the average error at
time t from the known set of events F is a good estimator
for the error from the complete set C. Another way of
stating this approximation is that the events in F are
characteristic of those in C.
The estimator X(F) asymptotically approaches the

average error, E(C), in two cases. The first is as t
approaches infinity (i.e. when all processes have been
found), where it reduces to Eq. 6. The second is as the
MD temperatures approaches infinity for systems where
each process has the same entropic prefactor (i.e. when
k1,Thigh

= k2,Thigh
= . . . = kN,Thigh

), where it reduces to
Eq. 7.
In order to demonstrate the behavior of the estimator,

we have chosen a simple model system with three pro-
cesses: k1,Tlow

= 0.009, k2,Tlow
= 0.09, and k3,Tlow

= 0.9
s−1. Three cases will be examined for the high tem-

perature MD rates: ki,Thigh
= ki,Tlow

, ki,Thigh
= k

3/4
i,Tlow

,

ki,Thigh
= k

1/2
i,Tlow

. These cases correspond to performing
the MD sampling directly at the temperature of interest,
at a 33% increase, and at a 100% increase in temper-
ature. In this model, the prefactor of each process is
considered to be the same. The rate constants for each
case are shown in Fig. 1.
The quality of the estimator X(F) is determined by

comparing its average, X(C), to the exact average error
E(C). X(C) is obtained in a similar manner to Eq. 5,

X(C) =
∑

F∈P(C)

P (F)X(F). (9)

Results from analytic evaluation of Eqs. 5 and 9 for the
model system are shown in Fig. 2. In the case that
ki,Thigh

= ki,Tlow
, the MD rates are separated by an or-

der of magnitude, which is far from the equal-rate case
where the estimator is exact. At short time this leads
to significant underestimation of the error because the
fast process, which is found first, is not characteristic of
the entire set, violating the assumption of the estima-
tor. As the temperature is raised, the rate of finding the
processes increases. Importantly, the spread between the
high-temperature rates also decreases so that the error is
accurately modeled by the estimator at all times.

IV. VACANCY CLUSTER FORMATION IN
IRON

Systems that have been modeled using long time scale
dynamics include materials which have been damaged
by radiation. One such model system that has been used
to compare long time scale methods is vacancy cluster
formation in body centered cubic (bcc) Fe. The system
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FIG. 3. The effect of temperature on the HTST rate constants
in a bcc Fe lattice with vacancies.

was introduced by Fan et. al to demonstrate their au-
tonomous basin climbing (ABC) algorithm.[13] In their
calculation, the coalescence of vacancies into nano-voids
was determined to occur on the time scale of hours at
an initial temperature of 50◦C and a heating rate of
0.01 K/s. Interestingly, a similar calculation was done
by Brommer et. al using the kinetic activation relaxation
technique (k-ART) [14] who calculated a time scale of
milliseconds for the coalescence – a difference of eight
orders of magnitude. This remarkable disagreement pro-
vides a strong motivation for developing benchmarks that
can be used to compare the accuracy of different long
timescale dynamics methods. As such, we define such a
benchmark which is close to these previous calculations,
which we then also use to test our error estimator in
MDSS-AKMC.

The initial configuration for the benchmark has 50 ran-
domly placed vacancies in a 10×10×10 a0 supercell of bcc
Fe, where a0 = 2.87 Å is taken as the experimental lattice
constant. Initially, the average vacancy cluster size, Vn

is unity (or very close to unity). The state-to-state evo-
lution of the system is followed in time based upon rate
constants calculated using HTST with a fixed entropic
prefactor of 5×1012 s−1 at a temperature of 423 K. A
fixed prefactor was chosen to focus the benchmark to
the efficiency of saddle point determination. States are
defined as the set of points that minimize to the same
geometry. The potential energy is evaluated with an em-
bedded atom method (EAM) model, as parameterized by
Ackland et. al.[15] The requirement of the benchmark is
to determine the average time for the potential energy to
decrease below -7763.5 eV. This final energy corresponds
to an average vacancy cluster size Vn > 9.

The choice of Thigh is important for the efficiency
of MDSS-AKMC. Increasing Thigh increases the rate at
which processes are found. Too high, however, and a sys-
tematic error is introduced in X(F) due to anharmonic
corrections to the HTST rates in Eq. 8 and the loss of
first-order kinetics. The second issue can be addressed
by reaching local equilibrium before running high tem-
perature dynamics as in modified TAD.[16] Fig. 3 shows
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FIG. 5. Four AKMC trajectories of 50 randomly distributed
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vacancy cluster size; (b) fraction of monovacancies (MV); and
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the spectrum of rate constants for an initial configura-
tion (Vn ∼ 1) and a final configuration (Vn ∼ 10) at
423 K (Tlow), 800 K, and 1200 K. In both states, MD
at Tlow cannot be used to sample transitions on the pi-
cosecond time scale of our saddle searches. At 800 K the
temperature is sufficient to overcome the relatively low
barriers of vacancy diffusion in the initial state. In the
final state, however, when the vacancies have clustered,
a higher temperature of 1200 K is necessary.
The accuracy of the estimator is shown in Fig. 4 as

a function of Thigh. In the initial state, X(F) is a good
(and safe) estimator of the error in the rate catalogue
at 800 K. At 1200 K the harmonic approximation starts
to break down, and the estimator loses accuracy. In the
final state 1200 K is appropriate and the estimator is
accurate. In order to overcome the high barriers at the

end of the simulation, we choose Thigh to be 1200 K.
Tuning Thigh appropriately for different states would be
a natural improvement to the method.
Four independent MDSS-AKMC simulations were run

with MD saddle searches performed in each state at
1200 K, until X(F) < 0.01, which corresponds to a 99%
confidence in the total escape rate. The average time
taken to reach a potential energy of less than -7763.5 eV
was calculated as 12± 5 ms. Figure 5 shows the average
vacancy cluster size, fraction of defects that are mono-
vacancies, and the potential energy as functions of time
for each trajectory. While it is not possible to directly
compare this time to previously reported ABC and k-
ART simulations because of differences in the tempera-
ture profile, our calculated time scale for vacancy cluster
formation are in much better agreement with k-ART than
ABC.

V. COMPARING THE EFFICIENCY OF MD
AND DIMER SADDLE SEARCHES

Saddle searches based on MD have the advantage of
allowing an error estimator of the escape rate from a
state. This does not nessecarily mean, however, that
MD is a computationally efficient way of finding saddle
points. A numerical comparison of MD and dimer saddle
searches is done for three systems: Al adatom diffusion on
an Al(100) surface modeled with an an embedded atom
model developed by Voter and Chen [17]; the motion of
a compact Pt heptamer island on a Pt(111) surface mod-
eled with a a Morse potential [18]; and vacancy cluster
formation in bcc Fe, as described in Sec. IV.
Our metric for comparing the saddle search methods is

the average relative error in the total escape rate. Here
the escape rate is defined as the rate to exit from the ini-
tial potential energy basin and is obtained by averaging
Eq. 2 over 50 runs vs. the number of potential energy
(force) evaluations. All rates are calculated using HTST,
with a constant vibrational prefactor of 5×1012 s−1, at
300 K for the Al and Fe systems and at 700 K for the
Pt system. The total escape rate K in Eq. 2 was evalu-
ated by first running 20,000 high temperature MD sad-
dle searches to obtain a rate catalog that was considered
complete.
The initial distribution of configurations for the dimer

saddle searches was tuned for each system based upon
chemical intuition. In this way, a priori knowledge of
likely reaction mechanisms can be used to reduce the
computational effort. In each case, searches were ini-
tiated with displacements from the reactant minimum
drawn from a Gaussian distribution in a subset of the
Cartesian degrees of freedom. In the Al system, the
adatom and its first coordination shell (15 degrees of
freedom) were displaced with a standard deviation of
σ = 0.2 Å. In the Pt system, all seven island atoms (21
degrees of freedom) were displaced by σ = 0.1 Å. In the
Fe system a random Fe atom with coordination number
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FIG. 6. An efficiency comparison of dimer and MD saddle
searches for three different systems: Pt heptamer diffusion;
Al adatom diffusion; and vacancy cluster ripening in bcc Fe.
The inset for the Fe system shows the initial distribution of
vacancies.

less than eight was displaced, as well as all neighbors
within 6 Å, by σ = 0.2 Å. For the MD saddle searches
only the Thigh parameter is required; temperatures of
1000, 1200, and 2000 K were chosen for the Al, Fe, and
Pt systems respectively.

Differences in efficiency are shown for the three sys-
tems in Fig. 6. In the Pt system, the dimer searches
significantly outperform the MD searches. This is due to
the localized displacement scheme that effectively targets
the most important mechanism of island sliding.

In the Al system, diffusion mechanisms involve both
the adatom and surface atoms. This makes it more diffi-
cult to construct an effective distribution for dimer search
displacements. The performance of the two methods here
is similar unless a highly accurate rate catalog is required.
In this low-error regime, high-energy long range events
involving many atoms must be found and these are hard
to find with the dimer initiated with displacements local-
ized around the adatom.

In the initial state of the Fe system, there are 337 atoms
that neighbor the 50 vacancies. These under-coordinated
atoms are targeted by the dimer searches. While each of
the vacancies can diffuse, the escape rate is dominated
by a single fast process involving two nearby vacancies.
This outlier can be seen in the initial state spectrum of
rates at 423 K in Fig. 3. Since a random selection of the
correct under-coordinated atom to displace has a small
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FIG. 7. The average relative error in the rate for Al adatom
diffusion on Al(100) at 300 K with MDSS performed at 800 K,
E(C), (solid lines) compared with the average estimated er-
ror, X(C), (dashed lines) with a fixed harmonic prefactor of
5×1012 s−1 (top) and the Vineyard prefactor (bottom).

probability, the MD search strategy is more efficient be-
cause it automatically finds the fast event with a high
probability.
Each MD saddle search takes on average several times

more force calls to find a saddle. In the Al, Fe, and
Pt systems the MD saddle searches were six, two, and
four times more expensive, respectively. Despite the in-
creased cost per search, the MD method can still out-
perform dimer searches. There are a few reasons for this.
First, dimer searches can wander to configurations of high
energy where they are terminated, or to saddles which
do not connect back to the initial state minimum (by
steepest descent). Second, while dimer searches can be
localized to active regions of configuration space, intu-
ition may not be good enough to target the part of the
system with the highest rates (as in the bcc Fe case).
While MD has a higher overhead, per search, it is more
likely to find relevant saddles of high rate which are con-
nected to the initial state. Combined with a good error
estimation, MD searches can be preferable, particularly
in cases where high accuracy is desired.

VI. DISCUSSION

In order to evaluate the estimator X(F) the high tem-
perature rates ki,Thigh

must be known. In the Fe vacancy
cluster formation simulation, the estimator, when evalu-
ated with these HTST rates, was found to be accurate
enough to be useful as a stopping criterion. However,
it is not always the case that the HTST rate is a good
estimate of the high temperature escape rate.
For example, the three fastest diffusion events in the

Al adatom on Al(100) system at 300 K are a 2-atom
exchange mechanism, where the adatom pushes a sub-
strate atom up onto the surface; a hop mechanism, where
the adatom moves directly to a neighboring site; and a
4-atom exchange mechanism where the adatom pushes
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TABLE I. The three fastest events at 300 K for Al adatom diffusion on a Al(100) surface.

Event Prefactor Barrier HTST Rate (s−1) MD Rate (s−1)

(s−1) (eV) 300 K 800 K 800 K

2-Atom Exchange 1.4×1013 0.206 5.0×109 7.3×1011 (4.2 ± 0.3)×1011

Hop 5.8×1012 0.377 2.7×106 2.4×1010 (7.7 ± 0.8)×1010

4-Atom Exchange 2.0×1014 0.396 4.6×107 6.6×1011 (2.9 ± 0.5)×1010

three substrate atoms so that one surfaces three sites
away. The rates of these events as calculated by HTST
and MD are shown in Table I. The HTST rate of the 4-
atom exchange mechanism is 22 times greater than what
is observed in a direct MD simulation. The high HTST
rate means that the estimator underestimates the error
on the characteristic timescale of this event. Figure 7
shows the average value of the error estimator compared
to the true average error. Two cases are considered: a
constant prefactor for all events of 5×1012 s−1 and a
Vineyard harmonic prefactor calculated by diagonalizing
the dynamical matrix, which in turn is calculated by fi-
nite difference. [19] In the case of the constant prefactor
the predicted high temperature rates significantly under-
estimate the true rate, which results in an overly conser-
vative estimator. With the harmonic prefactor, the error
estimator is accurate until the relative error reaches the
contribution of the 4-atom exchange, at about 1% of the
total rate. At this point the estimator diverges from the
true error. A promising future direction is to obtain a
more accurate true rate from the statistics of the high
temperature MD trajectory.

MDSS-AKMC is similar to Voter’s TAD method, but
there are significant differences. In TAD, high tempera-
ture MD is used to find escape events from a state and
the time at which that event would have occurred at a
lower temperature of interest is extrapolated from HTST.
Once confidence has been reached that the first event at
low temperature has been found, the transition is taken
and the processes is repeated in the new state. One
might then ask why one should do the additional work
in MDSS-AKMC to reach confidence for the rate cata-
logue. First, an advantage of doing AKMC with the rate
catalogue is that it is based upon rates calculated at the
low temperature, and does not rely on an extrapolation
based upon the HTST approximation at the high tem-

perature, as in TAD. In principle the AKMC rates can be
made as accurate as desired, for example using dynam-
ical corrections to TST. Second, MDSS-AKMC can be
augmented with computational strategies that efficiently
recover known reaction mechanisms, including saddle re-
cycling [9] and the kinetic database [20]. Third, AKMC
allows for efficient coarse-graining of fast rates through
the Monte Carlo with absorbing Markov chains approach
[21]. The relative strengths of TAD and MDSS-AKMC,
as well as the possibility of a hybrid approach, will be
the subject of future studies.

VII. CONCLUSION

We have described a method to determine the events
that go into an AKMC rate catalog using high temper-
ature MD saddle searches. In simulations of surface and
bulk diffusion, this MDSS-AKMC method is shown to be
efficient for the calculation of long time scale dynamics in
comparison to AKMC based upon dimer saddle searches.
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Appendix A: Derivation of Equation 6

Here we give the details of how Eq. 6 is derived from
the definition given in Eq. 5.
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Proof.

E(C) =
∑

F∈P(C)

P (F)E(F) (5)

=
1

K

∑
F∈P(C)

∑
ki∈M

ki,Tlow

∏
kj∈F

p(t; kj,Thigh
)

∏
kj∈M

1− p(t; kj,Thigh
) (A1)

=
1

K

1∑
n1=0

· · ·
1∑

nN=0

N∑
i=1

(1− ni)ki,Tlow

N∏
j=1

p(t; kj,Thigh
)nj (1− p(t; kj,Thigh

))1−nj (A2)

=
1

K


kN,Tlow

(1− p(t; kN,Thigh
))

1∑
n1=0

· · ·
1∑

nN−1=0

N−1∏
j=1

p(t; ki,Thigh
)nj (1 − p(t; ki,Thigh

))1−nj

+
1∑

n1=0

· · ·
1∑

nN−1=0

N−1∑
i=1

kini

N−1∏
j=1

p(t; ki,Thigh
)nj (1− p(t; ki,Thigh

))1−nj


 (A3)

=
1

K
kN,Tlow

(1− p(t; kN,Thigh
)) + E({k1, . . . , kN−1}) (A4)

=
1

K

N∑
i=1

(1− p(t; ki,Thigh
))ki,Tlow

(A5)

=1− 1

K

N∑
i=1

p(t; ki,Thigh
)ki,Tlow

(6)

Eq. A1 follows from the definitions of E(F) and P (F).
In Eq. A2, the sum over the power set of C has been re-
written as N sums over indicator variables (ni) in order
to enumerate all subsets of C. In Eq. A3, the N th sum
has been explicitly evaluated for nN = 0 and nN = 1.

The factor
∑1

n1=0 · · ·
∑1

nN−1=0

∏N−1
j=1 p(t; ki,Thigh

)nj (1 −
p(t; ki,Thigh

))1−nj is equal to one as it represents the sum
of probabilities of all the ways to find any subset of
{k1, . . . , kN−1}. Eq. A4 is a recursion relation for E(C)
used to give Eq. A5, which is equivalent to Eq. 6.
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