Publications

2014

105. P. Xiao, D. Sheppard, J. Rogal, and G. Henkelman, Solid-State Dimer Method for Calculating Solid-Solid Phase Transitions J. Chem. Phys. (in press, 2014).

104. S. T. Chill, M. Welborn, R. Terrell, L. Zhang, J.-C. Berthet, A. Pedersen, H. Jonsson, G. Henkelman, EON: Software for long time simulations of atomic scale systems Model. Simul. Mater. Sci. Eng. (in press, 2014).

103. G. M. Mullen, L. Zhang, E. J. Evans Jr., T. Yan, G. Henkelman, and C. B. Mullins, Oxygen and hydroxyl species induce multiple reaction pathways for the partial oxidation of allyl alcohol over Au(111) J. Am. Chem. Soc. (in press, 2014). DOI

102. N. Sai, K. Leung, J. Zador, and G. Henkelman, First Principles Study of Photo-oxidation Degradation Mechanisms in P3HT for Organic Solar Cells Phys. Chem. Chem. Phys. 16, 8092-8099 (2014). DOI

101. Y. Zeng, P. Xiao, and G. Henkelman, Unification of Algorithms for Minimum Mode Optimization J. Chem. Phys. 140, 044115 (2014). DOI

100. S. Murugesan, O. A. Quintero, B. P. Chou, P. Xiao, K.-S. Park, J. W. Hall, R. A. Jones, G. Henkelman, J. B. Goodenough, and K. J. Stevenson, Wide Electrochemical Window Ionic Salt for use in Electropositive Metal Electrodeposition and Solid State Li-ion Batteries J. Mater. Chem. A 2, 2194-2201 (2014). DOI

2013

99. H.-Y. Kim and G. Henkelman, CO Adsorption-driven Surface Segregation of Pd on Au/Pd Bimetallic Surfaces: Role of Defects and Effect on CO Oxidation, ACS Catalysis 3, 2541-2546 (2013). DOI

98. R. M. Anderson, L. Zhang, J. A. Loussaert, A. I. Frenkel, G. Henkelman, and R. M. Crooks, An Experimental and Theoretical Investigation of the Inversion of Pd@Pt Core@Shell Dendrimer-Encapsulated Nanoparticles, ACS Nano 7, 9345-9353 (2013). DOI

97. P. Xiao, J.-G. Cheng, J.-S. Zhou, J. B. Goodenough, and G. Henkelman, Mechanism of the CaIrO3 post-perovskite phase transition under pressure, Phys. Rev. B 88, 144102 (2013). DOI

96. L. Zhang, R. Iyyamperumal, D. F. Yancey, R. M. Crooks, and G. Henkelman, Design of Pt-Shell Nanoparticles with Alloy Cores for the Oxygen Reduction Reaction, ACS Nano 7, 9168-9172 (2013). DOI

95. L. Zhang, H.-Y. Kim, and G. Henkelman, CO Oxidation at the Au-Cu Interface of Bimetallic Nanoclusters Supported on CeO2(111), J. Phys. Chem. Lett. 4, 2943-2947 (2013). DOI

94. J. Wu, G. K. P. Dathar, C. Sun, M. G. Theivanayagam, D. Applestone, A. G. Dylla, A. Manthiram, G. Henkelman, J. B. Goodenough, and K. J. Stevenson, In situ Raman spectroscopy of LiFePO4: Size and morphology dependence during charge and self-discharge, Nanotechnology 24, 424009 (2013). DOI

93. N. Membreno, P. Xiao, K.-S. Park, J. B. Goodenough, G. Henkelman, and K. J. Stevenson, In situ Raman study of phase stability of α-Li3V2(PO4)3 upon thermal and laser heating, J. Phys. Chem. C 117, 11994-12002 (2013). DOI

92. D. F. Yancey, S. T. Chill, L. Zhang, A. I. Frenkel, G. Henkelman, and R. M. Crooks, A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles, Chem. Sci. 4, 2912-2921 (2013). DOI

91. R. Iyyamperumal, L. Zhang, G. Henkelman, and R. M. Crooks, Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles, J. Am. Chem. Soc. 135, 5521-5524 (2013). DOI

90. Y. Liao, K.-S. Park, X. Penghao, G. Henkelman, L. Weishan, J. B. Goodenough, Sodium intercalation behavior of layered NaxNbS2 (0≤x≤1), Chem. Mater. 25, 1699-1705 (2013). DOI

89. Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J. Stevenson, and G. Henkelman, A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles, J. Phys. Chem. C 117, 7598-7604 (2013). DOI

88. R. Galhenage, H. Yan, S. Tenney, H.-Y. Park, G. Henkelman, P. Albrecht, D. Mullins, and D. Chen, Understanding the nucleation and growth of metals on TiO2: Co compared to Au, Ni and Pt, J. Phys. Chem. C 117, 7191-7201 (2013). DOI

87. M. Pan, A. J. Brush, Z. D. Pozun, H.-C. Ham, W.-Y. Yu, G. Henkelman, G. S. Hwang, and C. B. Mullins, Model studies of heterogeneous catalytic hydrogenation reactions with gold, Chem. Soc. Rev. 42, 5002-5013 (2013). DOI

86. A. G. Dylla, G. Henkelman, and K. J. Stevenson, Lithium insertion in nanostructured TiO2(B) architectures, Acc. Chem. Res. 46, 1104-1112 (2013). DOI

85. H.-Y. Kim and G. Henkelman, CO oxidation at the interface of Au nanoclusters and the stepped-CeO2(111) surface by the Mars-van Krevelen mechanism, J. Phys. Chem. Lett. 4, 216-221 (2013). DOI

2012

84. P. Xiao, Z. Q. Deng, A. Manthiram, and G. Henkelman, Calculations of oxygen stability in lithium rich cathodes, J. Phys. Chem. C 116, 23201-23204 (2012). DOI

83. S. Gudmundsdóttir, W. Tang, G. Henkelman, H. Jónsson, and E. Skúlason, Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1x2) electrodes, J. Chem. Phys. 137, 164705 (2012). DOI

82. L. Zhang and G. Henkelman, Tuning the oxygen reduction activity of Pd shell nanoparticles with random alloy cores, J. Phys. Chem. C 116, 20860-20865 (2012). DOI

81. P. Xiao and G. Henkelman, Communication: From graphite to diamond: Reaction pathways of the phase transition, J. Chem. Phys. 137, 101101 (2012). DOI

80. H.-Y. Kim and G. Henkelman, CO oxidation at the interface between doped-CeO2 and supported Au nanoparticles, J. Phys. Chem. Lett. 3, 2194-2199 (2012). DOI

79. K.-S. Park, P. Xiao, S.-Y. Kim, A. Dylla, Y.-M. Choi, G. Henkelman, K. J. Stevenson, and J. B. Goodenough, Enhanced charge-transfer kinetics by anion surface modification of LiFePO4, Chem. Mater. 24, 3212-3218 (2012). DOI

78. A. G. Dylla, P. Xiao, G. Henkelman, and K. J. Stevenson, Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets, J. Phys. Chem. Lett. 3, 2015-2019 (2012). DOI

77. M. Pan, Z. D. Pozun, W.-Y. Yu, G. Henkelman, and C. B. Mullins, Structure revealing H/D exchange with co-adsorbed hydrogen and water on gold, J. Phys. Chem. Lett. 3, 1894-1899 (2012). DOI

76. R. Terrell, M. Welborn, S. T. Chill, and G. Henkelman, Database of atomistic reaction mechanisms with application to kinetic Monte Carlo, J. Chem. Phys. 137, 014105 (2012). DOI

75. M. Pan, Z. D. Pozun, A. J. Brush, G. Henkelman, and C. B. Mullins, Low-temperature chemoselective gold-surface-mediated hydrogenation of acetone and propionaldehyde, ChemCatChem 4, 1241-1244 (2012). DOI

74. Z. D. Pozun, K. Hansen, D. Sheppard, M. Rupp, K.-R. Müller, and G. Henkelman, Optimizing transition states via kernel-based machine learning, J. Chem. Phys. 136, 174101 (2012). DOI

73. H.-Y. Kim, J.-N. Park, G. Henkelman, and J.-M. Kim, Design of highly-nanodispersed Pd-MgO/SiO2 composite catalyst with multifunctional activity for CH4 reforming ChemSusChem. 5, 1474-1481 (2012). DOI

72. E. Carino, H.-Y. Kim, G. Henkelman, and R. M. Crooks, Site-selective Cu deposition on Pt dendrimer-encapsulated nanoparticles: Correlation of theory and experiment, J. Am. Chem. Soc. 134, 4153-4162 (2012). DOI

71. D. F. Yancey, L. Zhang, R. M. Crooks, and G. Henkelman, Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory, Chem. Sci. 3, 1033-1040 (2012). DOI

70. D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkelman, A generalized solid-state nudged elastic band method, J. Chem. Phys. 136, 074103 (2012). DOI

69. H.-Y. Kim, H.-M. Lee, and G. Henkelman, CO oxidation mechanism on CeO2 supported Au nanoparticles, J. Am. Chem. Soc. 134, 1560-1570 (2012). DOI

2011

68. J.-H. Ryu, S.-S. Han, D.-H. Kim, G. Henkelman, and H.-M. Lee, Ligand-induced structural evolution of Pt55 nanoparticles: Amine versus thiol, ACS Nano 5, 8515-8522 (2011). DOI

67. N. V. Shestopalov, G. Henkelman, G. J. Rodin, Guided self-assembly of electrostatic binary monolayers via isothermal-isobaric control, J. Chem. Phys. 135, 154501 (2011). DOI

66. G. K. P. Dathar, D. Sheppard, K. J. Stevenson and G. Henkelman, Calculations of Li ion diffusion in olivine phosphates, Chem. Mater. 23, 4032-4037 (2011). DOI

65. D. W. Flaherty, W.-Y. Yu, Z. D. Pozun, G. Henkelman, and C. B. Mullins, Mechanism for the water-gas shift reaction on monofunctional platinum and cause of catalyst deactivation. J. Catal. 282, 278-288 (2011). DOI

64. M. Welborn, W. Tang. J. Ryu, V. Petkov, and G. Henkelman, A combined density functional and x-ray diffraction study of Pt nanoparticle structure, J. Chem. Phys. 135, 014503 (2011). DOI

63. Y. Lu, J. B. Goodenough, G. K. P. Dathar, G. Henkelman, J. Wu, and K. J. Stevenson, Behavior of Li guest in KNb5O13 host with one-dimensional tunnels and multiple interstitial sites, Chem. Mater. 23, 3210-3216 (2011). DOI

62. Z. D. Pozun and G. Henkelman, Hybrid density functional theory band structure engineering in hematite, J. Chem. Phys. 134, 224706 (2011). DOI

61. W. Tang, L. Zhang, and G. Henkelman, Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction, J. Phys. Chem. Lett. 2, 1328-1331 (2011). DOI [Erratum]

60. C.-Y. Lu and G. Henkelman, Role of geometric relaxation in oxygen binding to metal nanoparticles, J. Phys. Chem. Lett. 2, 1237-1240 (2011). DOI

59. J. A. Rasmussen, G. Henkelman, and B. Hammer, Pyrene: Hydrogenation, hydrogen evolution, and π-band model, J. Chem. Phys. 134, 164703 (2011). DOI

58. Z. D. Pozun, K. Tran, A. Shi, R. H. Smith, and G. Henkelman, Why silver nanoparticles are effective for olefin/paraffin separations, J. Phys. Chem. C 115, 1811-1818 (2011). DOI

57. D. Sheppard and G. Henkelman, Paths to which the nudged elastic band converges, J. Comput. Chem. 32, 1769-1771 (2011). [Comment on J. Comput. Chem. 31, 2526, (2010) and J. Comput. Chem. 31, 2510, (2010); summary of code changes] DOI

56. B. C. Norris, D. G. Sheppard, G. Henkelman, and C. W. Bielawski, Kinetic and thermodynamic evaluation of the reversible N-heterocyclic carbene-isothiocyanate coupling reaction: Applications in latent catalysis, J. Org. Chem. 76, 301-304 (2011). DOI

2010

55. C.-Y. Lu, D. E. Makarov, and G. Henkelman, Communication: κ-dynamics—An exact method for accelerating rare event classical molecular dynamics, J. Chem. Phys. 133, 201101 (2010). DOI

54. L. Xu and G. Henkelman, Calculations of Li adsorption and diffusion on MgO(100) in comparison to Ca, Phys. Rev. B 82, 115407 (2010). DOI

53. Z. D. Pozun and G. Henkelman, A Model to optimize the selectivity of gas separation in membranes, J. Membr. Sci. 364, 9-16 (2010). DOI

52. D. Sheppard, G. Henkelman, and O. A. von Lilienfeld, Alchemical derivatives of reaction energetics, J. Chem. Phys. 133, 084104 (2010). DOI

2009

51. L. Xu, D. Mei, and G. Henkelman, Adaptive kinetic Monte Carlo simulation of methanol decomposition on Cu(100), J. Chem. Phys. 131, 244520 (2009). DOI

50. N. S. Froemming and G. Henkelman, Optimizing core-shell nanoparticle catalysts with a genetic algorithm, J. Chem. Phys. 131, 234103 (2009). DOI

49. H. Kölpin, D. Music, G. Henkelman, and J. M. Schneider, Phase stability of AlYB14 sputtered thin films, J. Phys.: Condens. Matter 21, 355006 (2009). DOI

48. R. E. Palacios, W.-S. Chang, J. K. Grey, Y.-L. Chang, W. Miller, C.-Y. Lu, G. Henkelman, D. Zepeda, J. Ferraris, and P. Barbara, Detailed single-molecule spectroelectrochemical studies of the oxidation of coonjugated polymers, J. Phys. Chem. B 113, 14619-14628 (2009). DOI

47. B. M. Dickson, D. E. Makarov, and G. Henkelman, Pitfalls of choosing an order parameter for rare event calculations, J. Chem. Phys. 131, 074108 (2009). DOI

46. A. Pedersen, G Henkelman, J. Schiøtz, and H. Jónsson, Long time scale simulation of a grain boundary in copper, New J. Phys. 11, 073034 (2009). DOI

45. N. Shestopalov, T. Powell, G Henkelman, and G. Rodin, Optimal control of electrostatic self-assembly of binary monolayers, New J. Phys. 11, 053014 (2009). DOI

44. D. Mei, L. Xu, and G. Henkelman, Potential energy surface of methanol decomposition on Cu(110), J. Phys. Chem. C 113, 4522-4537 (2009). DOI

43. W. Tang and G. Henkelman, Charge redistribution in core-shell nanoparticles to promote oxygen reduction, J. Chem. Phys. 130, 194504 (2009). DOI

42. J. A. Farmer, C. T. Campbell, L. Xu, and G. Henkelman, Defect sites and their distributions on MgO(100) by Li and Ca adsorption calorimetry, J. Am. Chem. Soc. 131, 3098-3103 (2009). DOI

41. Y. Kim, T. A. Kirichenko, N. Kong, G. Henkelman, and S. K. Banerjee, First-principles studies of small arsenic interstitial complexes in crystalline silicon, Phys. Rev. B 79, 075201 (2009). DOI

40. W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter 21, 084204 (2009). DOI

2008

39. H. Kölpin, D. Music, G. Henkelman, J. M. Schneider, Phase stability and elastic properties of XMgB14 studied by ab initio calculations (X=Al, Ge, Si, C, Mg, Sc, Ti, V, Zr, Nb, Ta, Hf), Phys. Rev. B 78, 054122 (2008). DOI

38. L. Xu and G. Henkelman, Adaptive kinetic Monte Carlo for first-principles accelerated dynamics, J. Chem. Phys. 129, 114104 (2008). DOI

37. R. A. Ojifinni, J. Gong, N. S. Froemming, D. W. Flaherty, M. Pan, G. Henkelman, and C. B. Mullins, Carbonate formation and decomposition on atomic oxygen pre-covered Au(111), J. Am. Chem. Soc. 130, 11250-11251 (2008). DOI

36. D. Mei, L. Xu, and G. Henkelman, Dimer saddle point searches to determine the reactivity of formate on Cu(111), J. Catal. 258, 44-51 (2008). DOI

35. S.-C. Li, Z. Zhang, D. Sheppard, B. D. Kay, J. M. White, Y. Du, I. Lyubinetsky, G. Henkelman, and Z. Dohnalek, Intrinsic diffusion of hydrogen on rutile TiO2(110), J. Am. Chem. Soc. 130, 9080-9888 (2008). DOI

34. V. Petkov, N. Bedford, M. R. Knecht, M. G. Weir, R. M. Crooks, W. Tang, G. Henkelman and A. Frenkel, Periodicity and atomic ordering in nanosized particles of crystals, J. Phys. Chem. C 112, 8907-8911 (2008). DOI

33. R. A. Ojifinni, N. S. Froemming, J. Gong, M. Pan, T. Kim, J. M. White, G. Henkelman, and C. B. Mullins, Water enhanced low temperature CO oxidation and isotope effects on atomic oxygen covered Au(111), J. Am. Chem. Soc. 130, 6801-6812 (2008). DOI

32. L. Xu and G. Henkelman, Calculations of Ca adsorption on a MgO(100) surface: Determination of binding sites and growth mode, Phys. Rev. B 77, 205404 (2008). DOI

31. D. Sheppard, R. Terrell, and G. Henkelman, Optimization methods for finding minimum energy paths, J. Chem. Phys. 128, 134106 (2008). DOI

30. J. Zhu, J. A. Farmer, N. Ruzycki, L. Xu, C. T. Campbell and G. Henkelman, Calcium adsorption on MgO(100): Energetics, structure and role of defects, J. Am. Chem. Soc. 130, 2314-2322 (2008). DOI

29. G. Henkelman, Review of Mathematica 6.0, J. Am. Chem. Soc. 130, 775 (2008). DOI

2007 and earlier
28. L. Xu, C. T. Campbell, H. Jónsson, and G. Henkelman, Kinetic Monte Carlo simulations of Pd deposition and island growth on MgO(100), Surf. Sci. 601, 3133-3142 (2007). DOI

27. E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, Improved grid-based algorithm for Bader charge allocation, J. Comp. Chem. 28, 899-908 (2007). DOI

26. J. L. Fernández, J. M. White, Y. Sun, W. Tang, G. Henkelman, and A. J. Bard, Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods, Langmuir 22, 10426-10431 (2006). DOI

25. L. Xu, G. Henkelman, C. T. Campbell, and H. Jónsson, Pd diffusion on MgO(100): the role of defects and small cluster mobility, Surf. Sci. 600, 1351-1362 (2006). DOI

24. G. Henkelman, A. Arnaldsson, and H. Jónsson, Theoretical calculations of CH4 and H2 associative desorption from Ni(111): Could subsurface hydrogen play an important role?, J. Chem. Phys. 124, 044706 (2006). DOI

23. G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36, 354-360 (2006). DOI

22. G. Henkelman, M. X. LaBute and C.-S. Tung, P. W. Fenimore and B. H. McMahon, Conformational dependence of a protein kinase phosphate transfer reaction, Proc. Natl. Acad. Sci. USA 102, 15347-15351 (2005). DOI

21. L. Xu, G. Henkelman, C. T. Campbell, and H. Jónsson, Small Pd clusters, up to the tetramer at least, are highly mobile on the MgO(100) surface, Phys. Rev. Lett. 95, 146103 (2005). DOI

20. G. Henkelman, B. P. Uberuaga, D. J. Harris, J. H. Harding, and N. L. Allan, MgO addimer diffusion on MgO(100): a comparison of ab initio and empirical models, Phys. Rev. B 72, 115437 (2005). DOI

19. B. P. Uberuaga, R. Smith, A. R. Cleave, G. Henkelman, R. W. Grimes, A. F. Voter, and K. E. Sickafus, Dynamical simulations of radiation damage and defect mobility in MgO, Phys. Rev. B 71, 104102 (2005). DOI

18. B. P. Uberuaga, R. Smith, A. R. Cleave, G. Henkelman, R. W. Grimes, A. F. Voter, and K. E. Sickafus, Exploring long-time response to radiation damage in MgO, Nucl. Instr. & Methods B 228, 260-273 (2005). DOI

17. R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson, and H. Jónsson, Comparison of methods for finding saddle points without knowledge of the final states, J. Chem. Phys. 121, 9776-9792 (2004). DOI

16. B. P. Uberuaga, R. Smith, A. R. Cleave, F. Montalenti, G. Henkelman, R. W. Grimes, A. F. Voter, and K. E. Sickafus, Structure and mobility of defects formed from collision cascades in MgO, Phys. Rev. Lett. 92, 115505 (2004). DOI

15. F. Gao, G. Henkelman, W. J. Weber, L. R. Corrales and H. Jónsson, Finding possible transition states of defects in silicon-carbide and alpha-iron using the dimer method, Nucl. Instr. & Methods B 202, 1-7 (2003).

14. G. Henkelman and H. Jónsson, Multiple time scale simulations of metal crystal growth reveal importance of multi-atom surface processes, Phys. Rev. Lett. 90, 116101 (2003). DOI

13. G. Henkelman, and H. Jónsson, Long time scale simulations of Al(100) crystal growth, in Atomistic Aspects of Epitaxial Growth, Ed. M. Kotrla, 63-74 (Kluwer Academic, 2002).

12. B.P. Uberuaga, G. Henkelman, H. Jónsson, S. Dunham, W. Windl and R. Stumpf, Theoretical studies of self-diffusion and dopant clustering in semiconductors, Physica Status Solidi B 233, 24-30 (2002).

11. G. Henkelman, B.P. Uberuaga, S. Dunham and H. Jónsson, Simulations of dopant clustering in silicon: Dimer calculations using DFT forces, 2nd International Conference on Computational Nanoscience and Nanotechnology, 144-147 (2002).

10. G. Henkelman, Methods for calculating rates of transitions with application to catalysis and crystal growth, Ph.D. Thesis from the University of Washington, 1-157 (2001).

9. G. Henkelman and H. Jónsson, Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table, J. Chem. Phys. 115, 9657-9666 (2001).

8. G. Henkelman and H. Jónsson, Simulations of long time scale dynamics using the dimer method, Mat. Res. Soc. Symp. Proc. 677, AA8.1.1-9 (2001).

7. P. Fastenko, S. T. Dunham, and G. Henkelman, Modeling of annealing of high concentration arsenic profiles, Mat. Res. Soc. Symp. Proc. 669, J5.10 (2001).

6. G. Henkelman and H. Jónsson, Theoretical calculations of dissociative adsorption of CH4 on an Ir(111) Surface, Phys. Rev. Lett. 86, 664-667 (2001).

5. G. Henkelman, G. Jóhannesson, and H. Jónsson, Methods for finding saddle points and minimum energy paths, in Progress on Theoretical Chemistry and Physics, Ed. S. D. Schwartz, 269-300 (Kluwer Academic, 2000).

4. G. Henkelman, B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113, 9901-9904 (2000).

3. G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113, 9978-9985 (2000). [Erratum]

2. D.R. Beck, G. Henkelman, and R.O. Watts, Excited state dynamic-node diffusion Monte Carlo simulations, in Recent theoretical and experimental advances in hydrogen bonded clusters, Ed. S. S. Xantheas, 155-185 (Kluwer Academic, 2000).

1. G. Henkelman and H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys. 111, 7010-7022 (1999). [Erratum]